
Some New bounds on the Delta and Reverse Zagreb Indices
Authors: S. B. Bozkurt Altindag M. Matejic, S. Stankov, E. Milovanovic, I. Milovanovic
Keywords: Topological indices, degree-based invariants, Zagreb indices.
Abstract:
In this paper relationships between the first Zagreb index and delta (reverse) first Zagreb index are derived. Also some new bounds for these topological indices are obtained.
References:
[1] A. R. Ashrafi, T. Doslic, A. Hamzeh, The Zagreb coindex of graph operations, Discr. Appl. Math. 158 (2010) 1571–1578.
[2] B. Borovicanin, K. C. Das, B. Furtula, I. Gutman, Bounds for the Zagreb indices, MATCH Commun. Math. Comput. Chem. 78(1) (2017) 17–100.
[3] K. C. Das, Maximizing the sum of squares of the degrees of a graph, Discrete Math. 285(1–3) (2004) 57–66.
[4] K. C. Das, I. Gutman, Some properties of the second Zagreb index, MATCH Commun. Math. Comput. Chem. 52(1) (2004) 103–112.
[5] T. Doslic, T. Reti, D. Vukicevic, On the vertex degree indices of connected graphs, Chem. Phys. Lett. 512 (2011) 283–286.
[6] T. Doslic, Vertex–weighted Wiener polynomials for composite graphs, Ars Math. Contemp. 1 (2008) 66–80.
[7] S. Ediz, M. Cancan, Reverse Zagreb indices of Cartesian product of graphs, Int. J. Math. Comput. Sci. 11 (2016) 51–58.
[8] S. Ediz, Maximal chemical trees of the second reverse Zagreb index, Pacific J. Appl. Math. 7 (2015) 291–295.
[9] S. Ediz, Maximal graphs of the first reverse Zagreb beta index, TWMS J. Appl. Eng. Math. 8(1a) (2018) 306–310.
[10] B. Furtula, I.Gutman, A forgotten topological index, J. Math. Chem. 53 (2015) 1184–1190.
[11] I. Gutman, Degree–based topological indices, Croat. Chem. Acta 86 (2013) 351–361.
[12] I. Gutman, N. Trinajstic, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535–538.
[13] I. Gutman, K. Ch. Das, The first Zagreb index 30 years later, MATCH Commun. Math. Comput. Chem. 50 (2004) 83–92.
[14] I. Gutman, E. Milovanovic, I. Milovanovic, Beyond the Zagreb indices, AKCE Int. J. Graphs Comb. 17(1) (2020) 74–85.
[15] T. Hayashi, On some inequalities, Rend. Circ. Mat. Palermo 44 (1920) 336–340.
[16] J. L. W. V. Jensen, Sur les fonctions convexes et les inegalites entre les valeurs moyennes, Acta Math. 30 (1906) 175–193.
[17] V. R. Kulli, δ–Sombor index and its exponential for certain nanotubes, Annals Pure Appl. Math. 23 (2021) 37–42.
[18] D. S. Mitrinovic, P. M. Vasic, Analytic inequalities, Springer Verlag, Berlin–Heidelberg–New York, 1970.
[19] D. S. Mitrinovic, P. M. Vasic, History, variations and generalisations of the Cebysev inequality and the question of some priorities, Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 461-497 (1974) 1–30.
[20] D. S. Mitrinovic, J. E. Pecaric, A. M. Fink, Classical and new inequalities in analysis, Kluwer Academic Publishers, Dordrecht, 1993.
[21] S. Nikolic, G. Kovacevic, A. Milicevic, N. Trinajstic, The Zagreb indices 30 years after, Croat. Chem. Acta 76 (2003) 113–124.
[22] E. A. Nordhaus, J. W. Gaddum, On complementary graphs, Amer. Math. Monthly 63(3) (1956) 175–177.