Lower bounds of the Kirchhoff and degree Kirchhoff indices
Authors: Milovanović I.Ž., Milovanović E.I., Glogić E.
Keywords: Kirchhoff index; Degree Kirchhoff index; Laplacian spectrum (of graph); normalized Laplacian spectrum (of graph)
Abstract:
Let G be an undirected connected graph with n, n ≥ 3, vertices and m edges. If μ1 ≥ μ2 … ≥ μn-1 > μn = 0 and ρ1 ≥ ρ2 ≥ …≥ ρn-1 > ρn = 0 are the Laplacian and the normalized Laplacian eigenvalues of G, then the Kirchhoff and the degree Kirchhoff indices obey the relations K ƒ (G) = nΣn-1 i=1 μ-1 i and DK ƒ (G) = 2mΣn-1 i=1 ρ-1 i-1, respectively. The inequalities that determine lower bounds for some invariants of G, that contain K ƒ (G) and DK ƒ (G), are obtained in this paper. Lower bounds for K ƒ (G) and DK ƒ (G), known in the literature, are obtained as a special case.
References:
[1] Arauz, C. (2012) The Kirchhoff indexes of some composite networks. Discrete Applied Mathematics, 160(10-11): 1429-1440
[2] Biachi, M., Cornaro, A., Palacis, J.L., Torriero, A. (2013) Bound for Kirchhoff index via majorizatio techniques. J. Math. Chem., 51, 569-587
[3] Bozkurt, B.Ş., Bozkurt, D. (2012) On the sum of powers of normalized Laplacian eigenvalues of graphs. Communications in Mathematical and in Computer Chemistry / MATCH, vol. 68, br. 3, str. 917-930
[4] Cavers, M., Fallat, S., Kirkland, S. (2010) On the normalized Laplacian energy and general Randić index of graphs. Linear Algebra and its Applications, 433(1): 172-190
[5] Chen, H., Zhang, F. (2007) Resistance distance and the normalized Laplacian spectrum. Discrete Applied Mathematics, 155(5): 654-661
[6] Chung, F.R.K. (1997) Spectral graph theory. Providence, RI: American Mathematical Society / AMS
[7] Cioabă, S.M. (2006) Sums of powers of the degrees of a graph. Discrete Mathematics, 306(16): 1959-1964
[8] Cvetković, D., Rowlinson, P., Simić, S.K. (2010) Introduction to the Theory of Graph Spectra. Cambridge: Cambridge University Press
[9] Das, K.Ch., Güngör, D.A., Çevik, S.A. (2012) On Kirchhoff index and resistance-distance energy of a graph. Communications in Mathematical and in Computer Chemistry / MATCH, vol. 67, br. 2, str. 541-556
[10] Feng, L., Gutman, I., Yu, G. (2013) Degree Kirchhoff index of unicyclic graphs. Communications in Mathematical and in Computer Chemistry / MATCH, vol. 69, br. 3, str. 629-648
[11] Gao, X., Luo, Y., Liu, W. (2011) Resistance distances and the Kirchhoff index in Cayley graphs. Discrete. Appl. Math., 159, 20150-2057
[12] Gao, X., Luo, Y., Liu, W. (2012) Kirchhoff index in line, subdivision and total graphs of a regular graph. Discrete Applied Mathematics, 160(4-5): 560-565
[13] Gutman, I., Trinajstić, N. (1972) Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons. Chemical Physics Letters, 17(4): 535-538
[14] Gutman, I., Mohar, B. (1996) The Quasi-Wiener and the Kirchhoff Indices Coincide. Journal of Chemical Information and Modeling, 36(5): 982-985
[15] Hakimi-Nezhaad, M., Ashrafi, A.R., Gutman, I. (2013) Note on degree Kirchhof index of graphs. Trans. Comb., 2 (3); 43-52
[16] Liu, M., Liu, B. (2011) A note on sum of powers of the Laplacian eigenvalues of graphs. Applied Mathematics Letters, 24(3): 249-252
[17] Merris, R. (1994) Laplacian matrices of graphs: a survey. Linear Algebra and its Applications, 197-198: 143-176
[18] Mitrinović, D.S., Vasić, P.M. (1970) Analytic inequalities. Berlin: Springer 143-175.
[19] Palacios, J., Renom, J.M. (2011) Another look at the degree Kirchhoff index. Int. J. Quantum Chem., 111, 3453-3455
[20] Palacios, J., Renom, J.M. (2011) Brodr and Karlin’s formule for hitting times and the Kirchhoff index. Int. J. Quantum Chem., 35-39; 111
[21] Rao, L. (2013) Lower bounds for the Kirchhoff index. Communications in Mathematical and in Computer Chemistry / MATCH, vol. 70, br. 1, str. 163-174
[22] Yu, G., Feng, L. (2010) Randić Index and Eigenvalues of Graphs. Rocky Mountain Journal of Mathematics, 40(2): 713-721
[23] Zhou, B. (2008) On sum of powers of the Laplacian eigenvalues of graphs. Linear Algebra and its Applications, 429(8-9): 2239
[24] Zhou, B., Trinajstić, N. (2008) A note on Kirchhoff index. Chemical Physics Letters, 455(1-3): 120-123