Symmetry analysis of turbulent flows on the base of the variational principles of non-equilibrium thermodynamics and theory of Q1D systems
Authors: Mészáros Cs., Bálint Á.
Abstract:
A novel-type symmetry analysis of the basic mathematical formalism of some fundamental features of the convection-diffusion and turbulent flows is given on the base of the Riccati-type ordinary and matrix differential equation. Common symmetry features of the turbulent flow velocity and incommensurately modulated crystals are also briefly discussed.
References:
[1] Gyarmati, I. (1970) Non-equilibrium thermodynamics: Field theory and variational principles. Berlin: Springer-Verlag
[2] Imazio, P.R., Mininni, P.D. (2013) Passive scalar cascades in rotating helical and non-helical flows. Physica Scripta, T155: 014037
[3] Landau, L.D., Lifshitz, E.M. (2000) Fluid mechanics. Oxford: Butterworth-Heinemann, 2nd Ed
[4] Landau, L.D., Lifshitz, E.M. (2000) Statistical physics. Oxford: Butterworth-Heinemann
[5] Mészáros, C.S., Farkas, I., Gottschalk, K., Székely, L., Bálint, Á. (2012) A novel-type solution of the convection-diffusion equation for porous media. u: 18th International Drying Symposium (IDS 2012), 11-15 November 2012, Xiamen, China
[6] Mitrinović, D.S. (1983) Lectures on Differential Equations (Predavanja o diferencijalnim jednačinama). Belgrade: Građevinska Knjiga
[7] Tribelskii, M.I. (1997) Short-wavelength instability and transition to chaos in distributed systems with additional symmetry. Physics – Uspekhi, 40, 159-180
[8] Vuković, T., Milošević, I., Damnjanović, M. (1996) Molien functions and commensurability of the helicoidal ordering. Physics Letters A, 216(6): 307-312
[9] Zelikin, M.I. (2000) Control Theory and Optimization I. (Homogeneous Spaces and the Riccati Equation in the Calculus of Variations). Berlin-Heidelberg-New York: Springer-Verlag