The modified first Zagreb connection index and the trees with given order and size of matchings

Authors: Noureen Sadia, Ahmad Bhatti Akhlaq

Keywords: topological indices; modified first Zagreb connection index; trees; matching number

Abstract:

A subset of the edge set of a graph G is called a matching in G if its elements are not adjacent in G. A matching in G with the maximum cardinality among all the matchings in G is called a maximum matching. The matching number in the graph G is the number of elements in the maximum matching of G. This present paper is devoted to the investigation of the trees, which maximize the modified first Zagreb connection index among the trees with a given order and matching number.

References:

[1]Ali, A., Trinajstić, N. (2018) A novel/old modification of the first Zagreb index. Mol. Inform, 37: 6-7, 1800008 [2]Ali, A., Gutman, I., Milovanović, E., Milovanović, I. (2018) Sum of powers of the degrees of graphs: extremal results and bounds. MATCH Commun. Math. Comput. Chem, 80: 5-84 [3]Ali, A., Zhong, L., Gutman, I. (2019) Harmonic index and its generalizations: extremal results and bounds. MATCH Commun. Math. Comput. Chem, 81: 249-311 [4]Ali, U., Javaid, M., Kashif, A. (2020) Modified Zagreb connection indices of the T-sum graphs. Main Group Metal Chemistry, 43(1): 43-55 [5]Ashrafi, A.R., Došlić, T., Hamzeh, A. (2010) The Zagreb coindices of graph operations. Discrete Applied Mathematics, 158(15): 1571-1578 [6]Basavanagoud, B., Chitra, E. (2018) On the leap Zagreb indices of generalized xyz-point-line transformation graphs T xyz (G) when z = 1. Int. J. Math. Combin, 2: 44-66 [7]Basavanagoud, B., Patil, S. (2016) A note on hyper-zagreb index of graph operations. Iran. J. Math. Chem, 7(1): 89-92 [8]Bondy, J.A., Murty, U.S.R. (1976) Graph Theory with Applications. New York: Elsevier [9]Borovićanin, B., Das, K.C., Furtula, B., Gutman, I. (2017) Bounds for Zagreb indices. MATCH Commun. Math. Comput. Chem, 78: 17-100 [10]Borovićanin, B., Das, K.C., Furtula, B., Gutman, I. (2017) Zagreb indices, Bounds and extremal graphs. u: Gutman I.; Furtula B.; Das K.C.; Milovanoví E.; Milovanovíć I. [ur.] Bounds in Chemical Graph Theory Basics, Kragujevac: Univ. Kragujevac, 67-153 [11]Cao, J., Ali, U., Javaid, M., Huang, C. (2020) Zagreb connection indices of molecular graphs based on operations. Complexity, vol. 2020, Article ID 7385682 [12]Das, K.C., Gutman, I. (2004) Some properties of the second Zagreb index. MATCH Commun. Math. Comput. Chem, 52: 103-112 [13]Du, Z., Ali, A., Trinajstić, N. (2019) Alkanes with the fist thee maximal/minimal modified fist zageb connection indices. Molecular Informatics, 38: 1800116 [14]Ducoffe, G., Marinescu-Ghemeci, R., Obreja, C., Popa, A., Tache, R.M. (2018) Extremal graphs with respect to the modified first Zagreb connection index. u: Proceedings of the 16th Cologne-Twente Workshop on Graphs and Combinatorial Optimization, CNAM Paris, France June 18-20, 65-68 [15]Fatima, N., Bhatti, A.A., Ali, A., Gao, W. (2019) Zagreb connection indices of two dendrimer nanostars. Acta Chemica Iasi, 27(1): 1-14 [16]Gutman, I., Trinajstić, N. (1972) Graph theory and molecular orbitals. Total p-electron energy of alternant hydrocarbons. Chem. Phys. Lett, 17: 535-538 [17]Gutman, I., Furtula, B., eds. (2010) Novel molecular structure descriptorstheory and applications. Kragujevac: Univ. Kragujevac, vols. I-II [18]Gutman, I., Das, K.C. (2004) The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem, 50: 83-92 [19]Gutman, I. (2011) Multiplicative Zagreb indices of trees. Bull. Soc. Math. Banja Luka, 18: 17-23 [20]Gutman, I., Furtula, B., Vukićević, K., Popivoda, G. (2015) On Zagreb indices and coindices. MATCH Commun. Math. Comput. Chem, 74(1): 5-16 [21]Gutman, I., Milovanović, E., Milovanović, I. Beyond the Zagreb indices. AKCE International Journal of Graphs and Combinatorics [22]Harary, F. (1969) Graph Theory. Reading, MA: Addison-Wesley [23]Khalid, S., Kok, J., Ali, A., Bashir, M. (2018) Zagreb connection indices of. TiO 2 nanotubes. Chemistry: Bulgarian J. Sci. Edu, 27: 86-92 [24]Manzoor, S., Fatima, N., Bhatti, A.A., Ali, A. (2018) Zagreb connection indices of some nanostructures. Acta Chemica Iasi, 26(2), in press [25]Naji, A.M., Soner, N.D., Gutman, I. (2017) On leap Zagreb indices of graphs. Commun. Comb. Optim, 2: 99-117 [26]Naji, A.M., Soner, N.D. (2018) The first leap Zagreb index of some graph operations. Int. J. Appl. Graph Theor, 2: 7-18 [27]Nikolić, S., Kovačević, G., Miličević, A., Trinajstić, N. (2003) The Zagreb indices 30 years after. Croat. Chem. Acta, 76: 113-124 [28]Noureen, S., Bhatti, A.A., Ali, A. (2020) Extremum modified first Zagreb connection index of n-vertex trees with fixed number of pendent vertices. Disc. Dyn. in Nat. and Soc, 3295342 [29]Noureen, S., Bhatti, A.A., Ali, A. (2020) On the Modified First Zagreb Connection Index of Trees of a Fixed Order and Number of Branching Vertices. Iranian J. Math. Chem, 11(4): 213-226 [30]Noureen, S., Bhatti, A.A. (2021) On the trees with given matching number and the modified first Zagreb connection index. Iranian J. Math. Chem, 12(3): 127-138 [31]Noureen, S., Ali, A., Bhatti, A.A. (2020) On the extremal Zagreb indices of n-vertex chemical trees with fixed number of segments or branching vertices. MATCH Commun. Math. Comput. Chem, 84: 513-534 [32]Noureen, S., Bhatti, A.A., Ali, A. (2020) Extremal trees for the modified first Zagreb connection index with fixed number of segments or vertices of degree 2. Journal of Taibah University for Science, 14(1): 31-37 [33]Todeschini, R., Consonni, V. (2000) Handbook of Molecular Descriptors. Weinheim: Wiley-VCH [34]Todeschini, R., Consonni, V. (2009) Molecular Descriptors for Chemoinformatics. Weinheim: Wiley-VCH [35]Ye, A., Qureshi, M.I., Fahad, A., Aslam, A., Jamil, M.K., Zafar, A., Irfan, R. (2019) Zagreb connection number index of nanotubes and regular hexagonal lattice. Open Chemistry, 17(1): 75-80 [36]Zhu, J.M., Dehgardi, N., Li, X. (2019) The third leap Zagreb index for trees. J. Chem, 9296401