Coupled soft fixed point theorems in soft metric and soft b-metric space
Authors: Wadkar B.R., Bhardwaj R., Mishra V.N., Singh B.
Keywords: soft point; soft metric space; soft contractive mapping; α-monotone property
Abstract:
In the present paper, we define Coupled Soft Metric Space. In the first part, we establish coupled soft fixed point theorem in soft metric space and in the second part of this paper, we prove coupled soft coincidence fixed point theorem for mapping satisfying generalized contractive conditions with α -monotone property in an ordered soft b-metric space.
References:
[1] Agarwal, R.P., Alghamdi, M.A., Oregan, D., Shahzad, N. (2015) Fixed point theory for cyclic weak Kannan type mappings. Journal of the Indian Math. Soc, vol. 82, Nos. (1 – 2), 11-21
[2] Agraval, R.P., Karapinar, E., Samet, B. essential Remark on fixed point results on multiplicative metric spaces. Fixed point theory and applications
[3] Ahmadullah, M., Ali, J., Imdad, M. (2016) Unified relation-theoretic metrical fixed point theorems under an implicit contractive condition with an application. Fixed Point Theory and Applications, 2016(1):
[4] Ali, J., Imdad, M., Mihet, D., Tanveer, M. (2011) Common fixed points of strict contractions in Menger spaces. Acta Mathematica Hungarica, 132(4): 367-386
[5] Ali, M. I., Feng, F., Liu, X., Min, W.K., Shabir, M. (2009) On some new operations in soft set theory. Computers & Mathematics with Applications, 57(9): 1547-1553
[6] Das, S., Samanta, S.K. (2012) Soft real sets, soft real numbers and their properties. J Fuzzy Math., 20 (3); 551-576
[7] Das, S., Samanta, S.K. (2013) On soft metric spaces. J Fuzzy Math, 21(3), pp 207-213
[8] Gunduz, A.C., Sonmez, A., Akall, H. (2013) On soft mappings. arXiv:1305.4545v1 [math.GM], 16 May
[9] Long-Guang, H., Xian, Z. (2007) Cone metric spaces and fixed point theorems of contractive mappings. J Math. Anal. Appl., 332, 1468-1476
[10] Maji, P.K., Biswas, R., Roy, A.R. (2003) Soft set theory. Comput. Math. Appl, 45, str. 555-562
[11] Mishra, P.K., Sweta, S., Banerjee, S.K. (2014) Some fixed point theorems in b- metric space. Turkish J. Anal. Number Theory, vol. 2. No. 1, 19-22
[12] Mohanta, S.K., Maitra, R. (2014) Coincidence point and common fixed point for expansive type mappings in cone b-metric space. Applied Mathematics E-Notes, 14, 200-208
[13] Molodtsov, D. (1999) Soft set theory: First results. Comput. Math. Appl, 37 19-31
[14] Pathak, H.K., Agarwal, R.P., Cho, Y.J. (2015) Coincidence and fixed points for multi-valued mappings and its application to nonconvex integral inclusions. Journal of Computational and Applied Mathematics, 283: 201-217
[15] R.P., Agraval, E., Karapinar, A.S.C.O. (2015) On an extension of contractivity conditions via auxiliary functions. Fixed Point Theory and Applications, 2015: 104
[16] Rhoades, B.E. (1977) A comparison of various definitions of contractive mappings. Transactions of the American Mathematical Society, 226: 257-257
[17] S., Bayramov, C., Aras, G. (2013) Soft locally compact and soft para compact spaces. Journal of Mathematics and System Science, vol. 3, pp 122-130
[18] Shabir, M., NAZ, M. (2011) On soft topological spaces. Comput. Math. Appl., 61, 1786-1799
[19] Wadkar, B.R., Singh, B.K., Bhardwaj, R., Tiwari, A. (2013) Coupled fixed point theorem in partially ordered metric space. Mathematical Theory and Modeling, vol. 3, No 6, 363-371