Make unification on α -admissible mappings and related fixed point theorems

Authors: Ansari A.H., Chandok S.

Keywords: α -admissible mappings; contractive mappings; αβ -contractive; fixed point

Abstract:

In this paper, we introduced the concepts pair (F , h) a upclass of type II and αβ – contractive mappings and show that theorems in [4]reduce to corollaries in this paper. that is, all them can obtain of one theorem. in end we state example for support main result.

References:

[1] Amini-Harandi, A., Emami, H. (2010) A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations. Nonlinear Analysis: Theory, Methods & Applications, 72(5): 2238-2242 [2] Ansari, A.H. (2014) Note on α: Admissible mappings and related fixed point theorems. u: The 2nd Regional Conference on Mathematics and Applications, PNU, September, 373-376 [3] Ansari, A.H., Shukla, S. (2016) Some fixed point theorems for ordered F -(F, h)-contraction and subcontractions in 0- f -orbitally complete partial metric spaces. J. Adv. Math. Stud, Vol. 9, No. 1, 37-53 [4] Babu, G.V.R., Sailaja, P.D. (2011) A Fixed Point Theorem of Generalized Weakly Contractive Maps in Orbitally Complete Metric Spaces. Thai Journal of Mathematics, Volume 9, 110 [5] Banach, S. (1922) Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math, 3, 133-181 [6] Harjani, J., Sadarangani, K. (2009) Fixed point theorems for weakly contractive mappings in partially ordered sets. Nonlinear Analysis: Theory, Methods & Applications, 71(7-8): 3403-3410 [7] Hussain, N., Karapinar, E., Salimi, P., Akbar, F. (2013) alpha-Admissible mappings and related Fixed point Theorems. Journal of Inequalities and Applications, 2013(1): 114 [8] Jachymski, J. (2011) Equivalent conditions for generalized contractions on (ordered) metric spaces. Nonlinear Analysis: Theory, Methods & Applications, 74(3): 768-774 [9] Samet, B., Vetro, C., Vetro, P. (2012) Fixed point theorems for -contractive type mappings. Nonlinear Analysis: Theory, Methods & Applications, 75(4): 2154-2165