Non-normal cone metric and cone b-metric spaces and fixed point results

Authors: Kadelburg Z., Paunović Lj., Radenović S., Rad Soleimani G.

Keywords: topological vector space; ordered normed space; cone metric space; b-metric space; tvs-cone b-metric space; Minkowski functional

Abstract:

We show that most fixed point results obtained so far in cone metric spaces over solid non-normal cones can be easily reduced to the case of solid normal cones and, hence, their proofs can be made much simpler. Also, cone tvs-valued spaces over solid cones are not an essential generalization of cone metric spaces. These results are consequences of the simple fact that each solid cone in a topological vector space is in fact normal under a suitably defined norm. The proof follows by using the technique of Minkowski functional. As an application of these results, we prove an extension of the classical Nemytzki-Edelstein fixed point result to (tvs)-(b)-cone metric spaces over solid cones.

References:

[1] Aliprantis, C.D., Tourky, R. (2007) Cones and duality. Providence: American Mathematical Society, Graduate Studies in Mathematics 84 [2] Amini-Harandi, A., Fakhar, M. (2010) Fixed point theory in cone metric spaces obtained via the scalarization method. Computers & Mathematics with Applications, 59(11): 3529-3534 [3] Bakhtin, I.A. (1989) The contraction mapping principle in quasi-metric spaces. Funct. Anal. Ulianowsk Gos. Ped. Inst., 30, 26-37 [4] Beg, I., Azam, A., Arshad, M. (2009) Common Fixed Points for Maps on Topological Vector Space Valued Cone Metric Spaces. International Journal of Mathematics and Mathematical Sciences, 2009: 1-8 [5] Çakallı, H., Sönmez, A., Genç, Ç. (2012) On an equivalence of topological vector space valued cone metric spaces and metric spaces. Applied Mathematics Letters, 25(3): 429-433 [6] Cosentino, M., Salimi, P., Vetro, P. (2014) Fixed point results on metric-type spaces. Acta Mathematica Scientia, 34(4): 1237-1253 [7] Cvetković, A.S., Stanić, M.P., Dimitrijević, S., Simić, S. (2011) Common Fixed Point Theorems for Four Mappings on Cone Metric Type Space. Fixed Point Theory and Applications, 2011: 1-15 [8] Czerwik, S. (1993) Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostraviensis, 1, 5-11 [9] Deimling, K. (1985) Nonlinear functional analysis. Springer Verlag [10] Du, W. (2010) A note on cone metric fixed point theory and its equivalence. Nonlinear Analysis: Theory, Methods & Applications, 72(5): 2259-2261 [11] Du, W., Karapınar, E. (2013) A note on cone b-metric and its related results: generalizations or equivalence?. Fixed Point Theory and Applications, 2013(1): 210 [12] Edelstein, M. (1961) An extension of Banach’s contraction principle. Proc. Amer. Math. Soc., 12: 7 [13] Farajzadeh, A.P., Amini-Harandi, A., Baleanu, D. (2012) Fixed point theory for generalized contractions in cone metric spaces. Communications in Nonlinear Science and Numerical Simulation, 17(2): 708-712 [14] Feng, Y., Mao, W. (2010) The equivalence of cone metric spaces and metric spaces. Fixed Point Theory, 11 (2); 259-26 [15] Huang, L., Zhang, X. (2007) Cone metric spaces and fixed point theorems of contractive mappings. Journal of Mathematical Analysis and Applications, 332(2): 1468-1476 [16] Hussain, N., Shah, M.H. (2011) KKM mappings in cone Computers & Mathematics with Applications, 62(4): 1677-1684 [17] Hussain, N., Parvaneh, V., Roshan, J., Kadelburg, Z. (2013) Fixed points of cyclic weakly (ψ,φ,L,A,B)-contractive mappings in ordered b-metric spaces with applications. Fixed Point Theory and Applications, 2013(1): 256 [18] Janković, S., Kadelburg, Z., Radenović, S. (2011) On cone metric spaces: A survey. Nonlinear Analysis: Theory, Methods & Applications, vol. 74, br. 7, str. 2591-2601 [19] Kadelburg, Z., Radenović, S., Rakočević, V. (2011) A note on the equivalence of some metric and cone metric fixed point results. Applied Mathematics Letters, 24(3): 370-374 [20] Kadelburg, Z., Radenović, S., Rakočević, V.R. (2010) Topological vector space-valued cone metric spaces and fixed point theorems. Fixed Point Theory Appl., Art. ID 170253, 17 pp [21] Khamsi, M. A., Wojciechowski, P.J. (2013) On the Additivity of the Minkowski Functionals. Numerical Functional Analysis and Optimization, 34(6): 635-647 [22] Khani, M., Pourmahdian, M. (2011) On the metrizability of cone metric spaces. Topology and its Applications, 158(2): 190-193 [23] Krein, M. (1940) Proprietes fondamentales des ensembles coniques normaux dans 1 espace de Banach. C.R. (Doklady) Acad. Sci. URSS, N.S.) 28, 13-17 [24] Kreĭn, M.G., Rutman, M.A. (1948) Linear operators leaving invariant a cone in a Banach spaces. Uspekhi Mat. Nauk, [in Russian], (N.S.) 3 (1), 3-95 [25] Kurepa, Đ.R. (1934) Tableaux ramifiés d’ensembles. Espaces pseudo-distanciés. Comptes Rend Acad Sci, Paris, 198, 1563-1565 [26] Nemytzki, V.V. (1936) The fixed point method in analysis. Uspekhi Mat. Nauk., 1, 141-174; in Russian [27] Proinov, P.D. (2013) A unified theory of cone metric spaces and its applications to the fixed point theory. Fixed Point Theory and Applications, 2013(1): 103 [28] Rezapour, S., Hamlbarani, R. (2008) Some notes on the paper ‘Cone metric spaces and fixed point theorems of contractive mappings’. Journal of Mathematical Analysis and Applications, 345(2): 719 [29] Schaefer, H.H. (1971) Topological vector spaces. Berlin: Springer [30] van Dung, N., Hang, V.T.L. (2015) On relaxations of contraction constants and Caristi’s theorem in b-metric spaces. Journal of Fixed Point Theory and Applications, 18(2): 267-284 [31] Yau-Chuen, W., Kung-Fu, N.G. (1973) Partially ordered topological vector spaces. Oxford: Clarendon Press [32] Zabrejko, P.P. (1997) K-metric and K-normed linear spaces: Survey. Collect. Math, 48 (4-6), 825-859