Stoichiometric network analysis as mathematical method for examinations of instability region and oscillatory dynamics

Authors: Čupić Ž., Schmitz G., Kolar Anić Lj.

Keywords: Stoichiometric network analysis (SNA); mathematical modeling; stoichiometric models; nonlinear oscillatory reaction system; instability condition

Abstract:

Reaction systems in chemistry, physical chemistry, and biochemistry, which can be described by true or pseudo-stoichiometric relationships between species, and, therefore, represented with stoichiometric models, are usually very complex. For the analysis of the models of these complex nonlinear reaction systems with more than three variables, which can be in different dynamic states like multistability, oscillatority or chaos, some general mathematical methods such as the Stoichiometric network analysis (SNA) must be used. Although the SNA is a powerful method for systematic examination of complex reaction systems, identification of underlying reaction pathways, and stability analysis of dynamic states, this method is practically unknown among mathematicians. Therefore, a simple application of SNA to one five-dimensional model is given here.

References:

[1] Bray, W.C. (1921) A periodic reaction in homogeneous solution and its relation to catalysis. Journal of the American Chemical Society, 43(6): 1262-1267 [2] Bray, W.C., Liebhafsky, H.A. (1931) Reactions involving hydrogen peroxide, iodine and iodate ion I: Introduction. Journal of the American Chemical Society, 53(1): 38-44 [3] Clarke, B.L. (1988) Stoichiometric network analysis. Cell Byopohysics, 12, 237 [4] Clarke, B.L. (1980) Stability of complex reaction networks. u: Prigogine I., Rice S.A. [ur.] Advances in chemical physics, New York: J. Wiley, vol. XLIII, str. 1 [5] Clarke, B.L., Jeffries, C. (1985) Chemical reaction networks with finite attractor regions. Journal of Chemical Physics, 82(7): 3107 [6] Clarke, B.L. (1992) General method for simplifying chemical networks while preserving overall stoichiometry in reduced mechanisms. Journal of Chemical Physics, 97(6): 4066 [7] Clarke, B.L., Jiang, W. (1993) Method for deriving Hopf and saddle-node bifurcation hypersurfaces and application to a model of the Belousov-Zhabotinskii system. Journal of Chemical Physics, 99(6): 4464 [8] Čupić, Ž., Marković, V., Ivanović, A., Kolar-Anić, L.J. (2011) Modeling of the complex nonlinear processes: Determination of the instability region by the stoichiometric network analysis. u: Brennan C.R. [ur.] Mathematical Modelling, New York: Nova Science Publishers, 111-178 [9] Čupić, Ž., Kolar-Anić, L. (1999) Contraction of the model for the Bray-Liebhafsky oscillatory reaction by eliminating intermediate I2O. Journal of chemical physics, 110(8): 3951-3954 [10] Čupić, Ž., Kolar-Anić, L. (1999) Contraction of complex models by the stoichiometric network analysis. u: Stojanović B.D., Skorokhod V.V., Nikolić M.V. [ur.] Advanced sciences and technology of sintering, New York: Kluwer Academic Publishers, str. 75 [11] Čupić, Ž. (2001) Stehiometrijska mrežna analiza autokatalatora. Nauka, tehnika, bezbednost, vol. 11, br. 2, str. 29-37 [12] Čupić, Ž., Anić, S.R. (2003) Terorizam u svetlu nelinearnih nauka – stehiometrijska mrežna analiza populacionih procesa. Nauka, tehnika, bezbednost, vol. 13, br. 2, str. 39-49 [13] Epsein, I.R., Pojman, J.A. (1998) An introduction to nonlinear chemical dynamics: Oscillations, waves, patterns, and chaos. Oxford, itd: Oxford University Press / OUP [14] Gray, P., Scott, S.K. (1990) Chemical oscillations and instabilities: Non-linear chemical kinetics. Oxford: Oxford University Press [15] Jelic, S.Z., Cupic, Z.D., Kolar-Anic, L.Z., Vukojevic, V.B. (2009) Predictive Modeling of the Hypothalamic-Pituitary-Adrenal (HPA) Function. Dynamic Systems Theory Approach by Stoichiometric Network Analysis and Quenching Small Amplitude Oscillations. International Journal of Nonlinear Sciences and Numerical Simulation, vol. 10, br. 11-12, str. 1451-1472 [16] Jelic, S.Z., Cupic, Z.D., Kolar-Anic, L.Z. (2005) Mathematical modeling of the hypothalamic-pituitary-adrenal system activity. Mathematical Biosciences, vol. 197, br. 2, str. 173-187 [17] Jelić, S., Čupić, Ž., Kolar-Anić, L.J. (2008) Modelling of the hypothalamic-pituitary-adrenal system activity based on the stoichiometric analysis. u: Romano E., De Luca S. [ur.] New Research on Neurosecretory Systems, New York: Nova Science Publishers, 225-245 [18] Kolar-Anic, L.Z., Cupic, Z.D., Schmitz, G., Anic, S.R. (2010) Improvement of the stoichiometric network analysis for determination of instability conditions of complex nonlinear reaction systems. Chemical Engineering Science, vol. 65, br. 12, str. 3718-3728 [19] Kolar-Anić, Lj., Anić, S., Vukojević, V. (2011) Dinamika nelinearnih procesa – od monotone do oscilatorne evolucije. Beograd: Fakultet za fizičku hemiju [20] Kolar-Anić, L.Z., Schmitz, G. (1992) Mechanism of the Bray-Liebhafsky reaction: Effect of the oxidation of iodous acid by hydrogen peroxide. Journal of the Chemical Society Faraday Transactions, vol. 88 (16), str. 2343-2349 [21] Kolar-Anić, L.Z., Mišljenović, Đ.M., Anić, S.R., Nicolis, G. (1995) Influence of the reduction of iodate ion by hydrogen peroxide on the model of the Bray-Liebhfasky reaction. Reaction Kinetics and Catalysis Letters, vol. 54, str. 35-41 [22] Kolar-Anić, L.Z., Čupić, Ž.D., Anić, S.R., Schmitz, G. (1997) Pseudo-steady states in the model of the Bray-Liebhafsky oscillatory reaction. Journal of the chemical society: Faraday transactions, 93(12): 2147-2152 [23] Macesic, S., Cupic, Z., Kolar-Anic, L. (2012) Model of the nonlinear reaction system with autocatalysis and autoinhibition: Stability of dynamic states. Hemijska industrija, 66(5): 637-646 [24] Maćešić, S., Čupić, Ž., Anić, S., Kolar-Anić, L. (2015) Autocatalator as the source of instability in the complex non-linear neuroendocrine model. International Journal of Non-Linear Mechanics, 73: 25-30 [25] Marković, V.M., Čupić, Ž., Ivanović, A., Kolar-Anić, Lj. (2011) The stability of the extended model of hypothalamic-pituitary-adrenal axis examined by stoichiometric network analysis. Russian Journal of Physical Chemistry A, 85(13): 2327-2335 [26] Marković, V.M., Čupić, Ž., Maćešić, S., Stanojević, A., Vukojević, V., Kolar-Anić, L. (2014) Modelling cholesterol effects on the dynamics of the hypothalamic-pituitary-adrenal (HPA) axis. Mathematical Medicine and Biology, 33(1): 1-28 [27] Nicholis, G., Prigogine, I. (1977) Self-organization in non-equilibrium systems. New York, itd: Wiley-Interscience [28] Nicolis, G., Prigogine, I. (1989) Exploring complexity. New York, NY: Freeman [29] Nicolis, G. (1995) Introduction to nonlinear science. Cambridge, itd: Cambridge University Press / CUP [30] Panchenkov, G.M., Lebedev, V.P. (1976) Chemical kinetiks and catalysis. Moscow: MIR [31] Prigogine, I. (1977) Time, structure and fluctuations. u: Nobel Lecture in Chemistry [32] Ross, J., Schreiber, I., Vlad, M.O. (2006) Determination of complex reaction mechanisms: Analysis of chemical, biological, and genetic networks. Oxford: Oxford University Press [33] Schmitz, G. (1987) Cinetique de la reaction de Bray. J. Chim. Phys, Vol. 84, 957-965 [34] Schmitz, G. (1991) Etude du Braylator par la methode de Clarke. J. Chim. Phys, Vol. 88, 15-25 [35] Schmitz, G., Kolar-Anić, L.Z., Anić, S.R., Čupić, Z.D. (2008) Stoichiometric Network Analysis and Associated Dimensionless Kinetic Equations. Application to a Model of the Bray−Liebhafsky Reaction. Journal of Physical Chemistry A, 112(51): 13452-13457 [36] Scott, S.K. (1991) Chemical chaos. Oxford: Clarendon Press [37] Veljković, S.R. (1969) Hemijska kinetika. Beograd: Građevinska knjiga [38] Zhabotinskii, A.M. (1974) Kontsentratsionye avtokolebaniya. Moskva: Nauka