AIFS and Newton’s interpolating polynomials

Authors: Lj. M. Kocić, S. Gegovska – Zajkova, V. Andova

Keywords: Newton's interpolation polynomial; IFS; AIFS

Abstract:

A multi-segment subdivision scheme for an arbitrary univariate real polynomial on a finite interval is established. The method uses Newton’s interpolation in combination with the AIFS (Affine invariant Iterated Function Systems) to construct a fractal-type algorithm that products polynomial geometry.

References:

[1] Andova, V. (2009) A method for polynomial attractors construction. Skopje, Macedonia: University Ss Cyril and Methodius, Master Thesis [2] Barnsley, M.F. (1993) Fractals everywhere. New York-San Diego, itd: Academic Press [3] Dubuc, S., Elqortobi, A. (1990) Approximations of fractal sets. Journal of Computational and Applied Mathematics, 29(1): 79-89 [4] Goldman, R.N., Heath, D.C. (1984) Linear subdivision is strictly a polynomial phenomenon. Computer Aided Geometric Design, 1(3): 269-278 [5] Kocic, L.M., Gegovska-Zajkova, S., Babace, E. (2011) Orthogonal Decomposition of Fractal Sets. Approximation and Computation: In Honor of Gradimir V. Milovanovic, 42: 145-156 [6] Kocić, Lj.M., Gegovska-Zajkova, S., Andova, V. (2009) Interpolation polynomials via AIFS. Bulletin mathematique de la societe des mathematiciens de la Republique de Macedoine, 33,(LIX),pp. 63-726 [7] Kocić, L.M., Simoncelli, A.C. (2002) Shape predictable IFS presentations. u: Novak M.M. [ur.] Emergent Nature, World Scientific, str. 435-436 [8] Kocić, L.M., Simoncelli, A.C. (1998) Towards free-form fractal modelling. u: Lyche T., Dæhlen M., Schumaker L.L., Vanderbilt U.P. [ur.] Mathematical methods for curves and surfaces II, Nashville: Vanderbilt University Press, str. 287-294 [9] Kocić, L.M., Simoncelli, A.C. (1998) Stochastic approach to affine invariant IFS. u: Hruskova M., Lachout P., Visek J. [ur.] Stochastics ’98., Prague: Charles University, str. 317-320 [10] Lane, J.M., Riesenfeld, R.F. (1980) A theoretical development for the computer generation and display of piecewise polynomial surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-: 35 2, 1, 46