Permutation matrices of reverse r-th stride
Authors: I. Z. Milovanović, E.R. Glogić, E. I. Milovanović, M. P. Bekakos, M. K. Stojčev
Keywords: Permutation matrices; tensor product
Abstract:
A new class of permutation matrices is defined in this paper. It is based on a tensor product of permutation matrices of reverse cyclic stride. Recurrent relation for generation of these matrices is derived.
References:
[1] Akl, S.G. (1989) The design and analysis of parallel algorithms. Englewood Cliffs, NJ, itd: Prentice Hall
[2] Anderson, J.A. (2004) Discrete mathematics with combinatorics. New Jersey: Pearson, Prentice Hall
[3] Cvetković, D., Milić, M. (1977) Graph theory and its applications. Beograd, In Serbian
[4] Dagman, Je.E., Kuharev, G.A. (1983) Fast discrere orthogonal transformations. Novosibirsk: Nauka, In Russian
[5] Dujella, A., Maretić, M. (2007) Cryptography. Zagreb: Element, In Croatian
[6] Milovanović, G.V. (1988) Numerical analysis. Beograd: Naučna knjiga, Part I (in Serbian)
[7] Milovanović, I.Ž., Milovanović, E.I. (2000) Discrete mathematics. Nis: Faculty of Electronic Engineering
[8] Milovanović, I.Ž., Bekakos, M.P., Tselepis, I.N., Milovanović, E.I. (2010) Forty-three ways of systolic matrix multiplication. International Journal of Computer Mathematics, 87(6): 1264-1276
[9] Stojčev, M., Milovanović, E., Milovanović, I. (1990) An algorithm for multiplication of concatenated matrices. Parallel Computing, 13(2): 211-223
[10] Stojić, M.R., Stanković, M.S., Stanković, R.S. (1985) Discrete transforms in application. Beograd: Naučna knjiga