Fixed point results in Gq-metric spaces with w-distance

Authors: Abbas M., Huang H., Sarwar M., Shoaib M.

Keywords: Fixed point; Jachymski function; w-distance; Gq -metric space

Abstract:

The aim of this paper is to introduce the concept of Gq -metric space. We establish the existence of fixed points of Jachymski type mappings in the framework of Gq -metric spaces equipped with w-distance. Our results generalize and extend various results in the existing literature. Several examples to support our results are also presented.

References:

[1] Abbas, M., Nazir, T., Vetro, P. (2011) Common fixed point results for three maps in G-metric spaces. Filomat, vol. 25, br. 4, str. 1-17 [2] Alegre, C., Marín, J., Romaguera, S. (2014) A fixed point theorem for generalized contractions involving w-distances on complete quasi-metric spaces. Fixed Point Theory and Applications, 2014(1): 40 [3] Dhage, B.C. (1992) Generalized metric spaces and mappings with fixed points. Bull. Cal. Math. Soc, 84, 329-336 [4] Dhage, B.C. (2000) Generalized metric spaces and topological Structure. I. Analele Stiintifice ale Universitatii Al. I. Cuza din Iasi. Serie Noua. Mathmatica, 46, 1, 3-24 [5] Dhage, B.C. (1994) On generalized metric spaces and topological structure II. Pure and Applied Mathematika Sciences, 40, br. 1-2, 37-41 [6] Dhage, B.C. (1994) On continuity of mappings in $D$-metric spaces. Bull. Calcutta Math. Soc., 86(6): 503 [7] Gähler, S. (1963) 2-metrische Räume und ihre topologische Struktur. Mathematische Nachrichten, 26(1-4): 115-148 [8] Ghler, S. (1966) Zur geometric 2-metrische rume. Rev. Roum. Math. Pures Appl, XL, 664-669 [9] Gholizadah, L., Saadati, R. (2011) Contractive mapping in Genralized ordered metric space with application in integral equations. Math. Prob. Engin, 1-14; 2011 [10] Gholizadeh, L. (2013) A fixed point theorem in generalized ordered metrice spaces with application. J. Nonlinear Sci. Appl., 244-251; 6 [11] Ha, K.S., Cho, Y.J., White, A. (1988) Strictly convex and strictly 2-convex 2-normed spaces. Math. Jpn, 33, 375-384 [12] Jachymski, J. (1995) Equivalent conditions and the Meir-Keeler type theorems. J. Math. Anal. Appl, 194, 293-303 [13] Matkowski, J. (1975) Integrable solutions of functional equations. Diss. Math, 1-68; 127 [14] Mustafa, Z., Sims, B. (2003) Some remarks concerning D−metric spaces. u: Proc. int. conf. fixed point theory and applications, Valencia, Jul, 189-198 [15] Mustafa, Z., Sims, B. (2006) A new approach to generalized metric spaces. J. Non- linear Convex Anal, 7, 289-297 [16] Saadati, R., Vaezpour, S.M., Vetro, P., Rhoades, B.E. (2010) Fixed point theorems in generalized partially ordered GG-metric spaces. Mathematical and Computer Modelling, 52(5-6): 797-801