Remark on lower bound for forgotten topological index

Authors: Milovanović E.I., Matejić M.M., Milovanović I.Ž.

Keywords: Vertex degree; the first Zagreb index; forgotten topological index

Abstract:

Let G be a simple connected graph with n vertices and m edges with vertex degree sequence d1 ≥ d2 ≥ . . . ≥ dn > 0. Denote by F = Σni =1 d3i forgotten topological index of graph G. In this paper we give some lower bounds for invariant F. Also, obtained bounds are compared with some known bounds from the literature.

References:

[1] Borovićanin, B., Das, K.C., Furtula, B., Gutman, I. (2017) Zagreb indices: Bounds and extremal graphs. u: Gutman I.; Furtula B.; Das K.C.; Milovanović E.; Milovanović I. [ur.] Bounds in Chemical Graph Theory: Basics (Mathematical Chemistry Monographs), Kragujevac: Univ. Kragujevac, MCM 19, pp. 67-153 [2] Borovićanin, B., Das, K.C., Furtula, B., Gutman, I. (2017) Bounds for Zagreb indices. MATCH Commun. Math. Comput. Chem, 78, 17-100 [3] Edwards, C.S. (1977) The largest vertex degree sum for a triangle in a graph. Bull. London Math. Soc., 9, 203-208 [4] Furtula, B., Gutman, I. (2015) A forgotten topological index. J Math. Chem., 53, 1184-1190 [5] Gutman, I., Trinajstić, N. (1972) Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons. Chemical Physics Letters, 17(4): 535-538 [6] Gutman, I., Furtula, B., Kovijanić-Vukićević, Z., Popivoda, G. (2015) On Zagreb indices and coindices. MATCH Commun. Math. Comput. Chem, 74, 5-16 [7] Gutman, I. (2014) On the origin of two degree-based topological indices. Bulletin: Classe des sciences mathématiques et natturalles – Sciences mathématiques, vol. 146, br. 39, str. 39-52 [8] Gutman, I., das Kinkar, Ch. (2004) The first Zagreb index 30 years after. Communications in mathematical and in computer chemistry / MATCH, br. 50, str. 83-92 [9] Liu, B., Gutman, I. (2007) On general Randić indices. Communications in Mathematical and in Computer Chemistry, vol. 58, br. 1, str. 147-154 [10] Milićević, A., Nikolić, S., Trinajstić, N. (2004) On reformulated Zagreb indices. Mol. Divers, 8, 393-399 [11] Milovanović, E.I., Milovanović, I.Z., Dolićanin, E.ć.E., Glogić, A. (2016) A note on the first reformulated Zagreb index. Appl. Math. Comput, 273, 16-20 [12] Mitrinović, D.S., Vasić, P.M. (1974) History, variations and generalisations of the Cˇebysˇev inequality and the question of some priorities. Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat. Fiz., 1-30; 461-497 [13] Mitrinović, D.S. (1970) Analytic Inequalities. Berlin, Heidelberg: Springer Nature [14] Vasić, P.M., Djordjević, R.Ž. (1973) Cˇebysˇev inequality for convex sets. Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat. Fiz., 17-20; 412- 460 [15] Zhou, B., Trinajstić, N. (2010) Some properties of the reformulated Zagreb indices. J Math. Chem., 714-719; 48