Gp-metric spaces-symmetric and asymmetric

Authors: Gajić Ljiljana, Kadelburg Zoran, Radenović Stojan

Keywords: Gp-metric space; complete Gp-metric space; symmetric Gp-metric space; asymmetric Gp-metric space

Abstract:

In this paper, we discuss some results in the framework of Gp-metric spaces, established recently in several papers. The main purpose is to complement and explain the theoretical approach in the development of Gp-metric spaces. Some examples are given to support our theoretical conclusions.

References:

[1] Abbas, M., Nazir, T., Vetro, P. (2011) Common fixed point results for three maps in G-metric spaces. Filomat, vol. 25, br. 4, str. 1-17 [2] Aydi, H., Karapinar, E., SALIMI, P. (2012) Some fixed point results in Gp-metric spaces. J Appl. Math., 1-16; 891713 [3] Barakat, M.A., ZIDAN, A.M.A. (2015) common fixed point theorem for weak contractive maps in Gp-metric spaces. J Egypt. Math. Soc, Vol. 23, 309-314 [4] Bilgili, N., Karapinar, E., SALIMI, P. (2013) Fixed point theorems for generalized contractions on Gp-metric spaces. J Inequal. Appl, Vol. 2013: 39 [5] Ćirić, L., Alsulami, S.M., Parvaneh, V., Roshan, J. (2013) Some fixed point results in ordered Gp-metric spaces. Fixed Point Theory and Applications, 2013(1): 317 [6] Di, B.C., Milojević, M., Radenović, S., Vetro, P. (2012) Common fixed points for self-mappings on partial metric spaces. Fixed Point Theory and Applications, 2012(1): 140 [7] Gajic, Lj., Stojakovic, M. (2015) On fixed point results for Matkowski type of mappings in G-metric spaces. Filomat, 29(10): 2301-2309 [8] Gajic, Lj., Radenovic, S. (submitted) Sehgal-Guseman type results in the framework of Gp metric spaces [9] Ilić, D., Pavlović, V., Rakočević, V. (2013) Fixed points of mappings with a contractive iterate at a point in partial metric spaces. Fixed Point Theory and Applications, 2013(1): 335 [10] Jleli, M., Samet, B. (2012) Remarks on G-metric spaces and fixed point theorems. Fixed Point Theory and Applications, 2012(1): 210 [11] Kaya, M., and FURKAN, Z.M.O.¨.H. (2016) Some common fixed point theorems for (F; f)- contraction mappings in 0-Gp-complete Gp-metric mpaces. British J. Math. Comput. Sci., Vol. 16(2), 1-23, 25573 [12] Kaya, M., Furkan, H. (submitted) Some common fixed point results for contractive mappings in ordered Gp-metric spaces [13] Matthews, S.G. (1994) Partial Metric Topology. Annals of the New York Academy of Sciences, 728(1 General Topol): 183-197 [14] Mustafa, Z., SIMS, B.A. (2006) A new approach to generalized metric spaces. J Nonlinear Convex Anal, Vol. 7 (2), 289-297 [15] Oltra, S., VALERO, O. (2004) Banach fixed point theorem for partial metric spaces. Rend. Istituto Matematica Universita Trieste, Vol. 36 (1-2), 17-26 [16] Paravneh, V., Roshan, J.R., On, K.Z. (2013) generalized weakly Gpcontractive mappings in ordered Gp-metric spaces. Gulf J. Math, Vol. 1, 78-97 [17] Paravneh, V., Salimi, P., Vetro, P., Nezhad, A.D., RADENOVIC, S. (2014) Fixed point results for GP(Λ, Θ)-contractive mappings. J Nonlinear Sci. Appl, Vol. 7, 150-159 [18] Popa, V., Patriciu, A. (2015) Two general fixed point theorems for a sequence of mappings satisfying implicit relations in Gp – metric spaces. Applied General Topology, 16(2): 225 [19] Romaguera, S. (2010) A Kirk Type Characterization of Completeness for Partial Metric Spaces. Fixed Point Theory and Applications, 2010: 1-7 [20] Salimi, P., VETRO, P. (2014) A result of Suzuki type in partial G-metric spaces. Acta Math. Scientia, B, Vol. 34; 274-284; (2) [21] Valero, O. (2005) On Banach fixed point theorems for partial metric spaces. Appl. General Topology, 6: 229-240 [22] Zand, A.M.R., Nezhad, A.D. (2011) A generalization of partial metric spaces. J. Contemp. Appl. Math, Vol. 1, 1, 86-93