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Remark on delta and reverse inverse degree indices

Ş. B. B. Altindağ, I. Milovanović, E. Milovanović
M. Matejić, S. Stankov

Abstract: Let G = (V,E), V = {v1, v2, . . . , vn}, be a simple graph of order n and size
m, with vertex–degree sequence ∆ = d1 ≥ d2 ≥ · · · ≥ dn = δ > 0. and let s1 ≥ s2 ≥
· · · ≥ sn, si = di − δ + 1 and c1 ≤ c2 ≤ · · · ≤ cn, ci = ∆− di + 1, be two vertex–degree
like sequences. By analogy with the inverse degree graph invariant, ID(G) =

∑n
i=1

1
di
,

the delta inverse degree and reverse inverse degree indices are defined, respectively, as
δID(G) =

∑n
i=1

1
si

and RID(G) =
∑n

i=1
1
ci
. In this paper we determine sharp bounds

on δID(G) and RID(G) and the extremal graphs are characterized.
Keywords: Graphs, topological indices and coindices, degree-based invariants.

1 Introduction

Let G = (V,E), V = {v1, v2, . . . , vn}, be a simple graph with n vertices, m edges with
vertex–degree sequence ∆ = d1 ≥ d2 ≥ · · · ≥ dn = δ > 0, di = d(vi). If vertices vi and
vj are adjacent in G, we write i ∼ j, otherwise we write i � j. With G we denote the
complement of graph G.

In graph theory, a graph invariant is property of the graph that is preserved by
isomorphisms. Obviously the simplest invariants are the number of vertices and the
number of edges. The graph invariants that assume only numerical values are usu-
ally referred to as topological indices in chemical graph theory. Hundreds of various
topological indices have been introduced in mathematical chemistry literature in order
to describe physical and chemical properties of molecules. Many of them are defined
as simple functions of the degree sequence of (molecular) graph. Most of the degree–
based topological indices are viewed as the contributions of pairs of adjacent vertices.
These type of indices are known as the bond incident degree (BID in short) indices [17].
Various mathematical properties of topological indices have been investigated, as well.

A wide class of vertex–degree–based topological indices (see, for example, [1, 3, 9]),
are defined as

TIf (G) =
∑
i∼j

(f(di) + f(dj)) =

n∑
i=1

dif(di). (1.1)
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When f(x) = 1
x2 we get the inverse degree index, ID(G), introduced in [8] as

ID(G) =
∑
i∼j

(
1

d2i
+

1

d2j

)
=

n∑
i=1

1

di
.

A new vertex–degree–like sequence s1 ≥ s2 ≥ · · · ≥ sn, si = di−δ+1, s1 = ∆−δ+1,
sn = 1, was introduced in [11]. By analogy with ID(G), delta inverse degree index,
δID(G), can be defined as

δID(G) =

n∑
i=1

1

si
. (1.2)

Also, according to the additive representation of ID(G), delta inverse vertex degree
beta index, δIDβ(G), can be defined as

δIDβ(G) =
∑
i∼j

(
1

s2i
+

1

s2j

)
=

n∑
i=1

di
s2i

. (1.3)

One can easily see that for the graphs with the property δ = 1, holds

ID(G) = δID(G) = δIDβ(G).

Of course, in general this is not true.
Similarly as in [11], in [5] (see also [6, 7, 16]) a new vertex–degree–like sequence

c1 ≤ c2 ≤ · · · ≤ cn, was introduced as ci = ∆ − di + 1, c1 = 1, cn = ∆ − δ + 1. By
analogy with indices δID(G) and δIDβ(G), reverse inverse degree index, RID(G), can
be defined as

RID(G) =

n∑
i=1

1

ci
(1.4)

and reverse inverse vertex degree beta index, RIDβ(G), as

RIDβ(G) =
∑
i∼j

(
1

c2i
+

1

c2j

)
=

n∑
i=1

di
c2i

. (1.5)

In general, topological indices ID(G), RID(G) and RIDβ(G) are different.
The concept of coindices was introduced in [4](see also [2]). In this case the sum

runs over the edges of the complement of G. In a view of (1.1), the corresponding
coindex of G can be defined as [1]

TIf (G) =
∑
i�j

(f(di) + f(dj)) =

n∑
i=1

(n− 1− di)f(di). (1.6)

Based on (1.6), topological coindices corresponding to indices δIDβ(G) andRIDβ(G)
are defined as

δID
β
(G) =

∑
i�j

(
1

s2i
+

1

s2j

)
=

n∑
i=1

(n− 1− di)
1

s2i
(1.7)
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and

RID
β
(G) =

∑
i�j

(
1

c2i
+

1

c2j

)
=

n∑
i=1

(n− 1− di)
1

c2i
. (1.8)

In this paper we determine sharp bounds for the above introduced indices/coindices
and the extremal graphs are characterized, considering numerical inequalities present
in the literature.

2 Main results

At the beginning let us recall a couple analytical inequalities for real number sequences
which will be used in the proofs of theorems.

Lemma 2.1. [15] Let x = (xi) and a = (ai), i = 1, 2, . . . , n, be positive real number
sequences. Then for any r ≥ 0 holds

n∑
i=1

xr+1
i

ari
≥

(
n∑

i=1

xi

)r+1

(
n∑

i=1

ai

)r . (2.1)

Equality holds if and only if x1

a1
= x2

a2
= · · · = xn

an
.

The inequality (2.1) is known in the literature as Radon’s inequality. Here it is
given in its original form. But, it is not difficult to verify that it is valid for any real
r such that r ≤ −1 or r ≥ 0, and when −1 ≤ r ≤ 0 the opposite inequality holds.
Equality holds if and only if r = −1, or r = 0, or x1

a1
= x2

a2
= · · · = xn

an
.

Lemma 2.2. [10] Let a = (ai), i = 1, 2, . . . , n, be a real number sequence with the property
0 < r ≤ ai ≤ R < +∞. Then

n∑
i=1

ai

n∑
i=1

1

ai
≤ n2

(
1 + α(n)

(R− r)2

rR

)
, (2.2)

where

α(n) =
1

4

(
1− (−1)n+1 + 1

2n2

)
.

In the next theorem we determine a lower bound on reverse inverse degree index,
RID(G), in terms of basic graph parameters n, m, ∆ and δ.

Theorem 2.1. Let G be a connected graph with n ≥ 2 vertices and m edges. Then

RID(G) ≥ 1 +
1

∆− δ + 1
+

(n− 2)2

n(∆ + 1)− 2m− (∆− δ + 2)
. (2.3)

Equality holds if and only if d2 = d3 = · · · = dn−1.
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Proof. Let a2, a3, . . . , an−1 be positive real numbers. According to the arithmetic–harmonic
mean inequality (see, for example, [13]), we have that

n−1∑
i=2

ai

n−1∑
i=2

1

ai
≥ (n− 2)2. (2.4)

Equality holds if and only if a2 = a3 = · · · = an−1.
For ai = ci, i = 2, 3, . . . , n− 1, this inequality becomes

n−1∑
i=2

ci

n−1∑
i=2

1

ci
≥ (n− 2)2, (2.5)

i.e. (
n∑

i=1

ci − c1 − cn

)(
n∑

i=1

1

ci
− 1

c1
− 1

cn

)
≥ (n− 2)2.

Since
n∑

i=1

ci = n(∆ + 1)− 2m, c1 = 1, cn = ∆− δ + 1,

from the above it follows

(n(∆ + 1)− 2m− (∆− δ + 2))

(
RID(G)− 1− 1

∆− δ + 1

)
≥ (n− 2)2,

from which we get (2.3).
Equality in (2.5) holds if and only if c2 = c3 = · · · = cn−1, which implies that equality

in (2.3) holds if and only if d2 = d3 = · · · = dn−1.

Corollary 2.1. Let G be a connected graph with n ≥ 2 vertices, m edges such that δ = 1.
Then

RID(G) ≥ 1 +
1

∆
+

(n− 2)2

(n− 1)(∆ + 1)− 2m
.

Equality holds if and only if d2 = d3 = · · · = dn−1.

The proof of the next theorem is analogous to that of Theorem 2.1, hence omitted.

Theorem 2.2. Let G be a connected graph with n ≥ 2 vertices and m edges. Then

δID(G) ≥ 1 +
1

∆− δ + 1
+

(n− 2)2

2m− n(δ − 1)− (∆− δ + 2)
. (2.6)

Equality holds if and only if d2 = d3 = · · · = dn−1.

Corollary 2.2. Let G be a connected graph with n ≥ 2 vertices, m edges such that δ = 1.
Then

δID(G) = ID(G) ≥ 1 +
1

∆
+

(n− 2)2

2m− (∆ + 1)
. (2.7)

Equality holds if and only if d2 = d3 = · · · = dn−1.
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Proof. When δ = 1, we have that si = di, for every i = 1, 2, . . . , n. Having this in mind, the
inequality (2.7) directly follows from (2.6).

Since

ci = ∆− di + 1 = ∆− (n− 1) + (n− 1)− di + 1

= di(G)− δ(G) + 1 = si(G) = si,
(2.8)

for every i = 1, 2, . . . , n, according to (2.3) and (2.6) in the next theorem we obtain the
inequality of Nordhaus–Gaddum type (see [14]) for RID(G).

Theorem 2.3. Let G be a connected graph with n ≥ 2 vertices and m edges. Then

RID(G) +RID(G) ≥ 2 +
2

∆− δ + 1

+
(∆− δ + 2)(n− 2)3

(n(∆ + 1)− 2m− (∆− δ + 2))(2m− n(δ − 1)− (∆− δ + 2))
.

Equality holds if and only if d2 = d3 = · · · = dn−1.

Proof. From (2.8) it follows

RID(G) =

n∑
i=1

1

ci
=

n∑
i=1

1

si
= δID(G),

and therefore

RID(G) +RID(G) = RID(G) + δID(G).

From the above identity and (2.3) and (2.6) we get the desired result.

Corollary 2.3. Let G be a connected graph with n ≥ 2 vertices, m edges with the property
δ = 1. Then

RID(G) +RID(G) = RID(G) + ID(G)

≥ 2 +
2

∆
+

(n− 2)3(∆ + 1)

((n− 1)(∆ + 1)− 2m)(2m− (∆ + 1))
.

Equality holds if and only if d2 = d3 = · · · = dn−1.

In the next theorem we determine an upper bound for RID(G) in terms of param-
eters n, m, ∆ and δ.

Theorem 2.4. Let G be a connected graph with n ≥ 2 vertices and m edges. Then

RID(G) ≤ 2m− n(δ − 1)

∆− δ + 1
. (2.9)

Equality holds if and only if di ∈ {∆, δ} for every i = 1, 2, . . . , n.
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Proof. Since
min
i
{ci} = c1 = 1 and max

i
{ci} = cn = ∆− δ + 1,

for every i = 1, 2, . . . , n, it follows

(∆− δ + 1− ci)

(
1− 1

ci

)
≥ 0,

that is

(∆− δ + 1)
1

ci
≤ di − (δ − 1). (2.10)

After summation of the above inequality over i, i = 1, 2, . . . , n, we get

(∆− δ + 1)RID(G) ≤ 2m− n(δ − 1), (2.11)

from which we get (2.9).
Equality in (2.10) holds if and only if ci ∈ {∆− δ+1, 1} for every i, i = 1, 2, . . . , n, and

therefore equality in (2.9) holds if and only if di ∈ {∆, δ} for every i = 1, 2, . . . , n.

Corollary 2.4. Let G be a connected graph with n ≥ 2 vertices and m edges. Then wev
have

RID(G) ≤ n2(∆− δ + 2)2

4(n(∆ + 1)− 2m)(∆− δ + 1)
. (2.12)

Equality holds if and only if G is a regular graph or ∆ = d1 = · · · = dn
2
> dn

2 +1 = · · · =
dn = δ, for even n.

Proof. According to (2.11) we have that

(∆− δ + 1)RID(G) ≤ 2m− n(δ − 1) = n(∆− δ + 2)− (n(∆ + 1)− 2m) ,

that is
(n(∆ + 1)− 2m) + (∆− δ + 1)RID(G) ≤ n(∆− δ + 2) .

By the arithmetic–geometric mean inequality (see e.g [13]) we have that

2
√
(∆− δ + 1)(n(∆ + 1)− 2m)RID(G) ≤ n(∆− δ + 2) ,

from which we arrive at (2.12).

Corollary 2.5. Let G be a connected graph with n ≥ 2 vertices, m edges with the property
δ = 1. Then

RID(G) ≤ 2m

∆
.

Equality holds if and only if di ∈ {∆, 1} for every i = 1, 2, . . . , n.

By a similar procedure as in case of Theorem 2.4, we get the following result.

Theorem 2.5. Let G be a connected graph with n ≥ 2 vertices and m edges. Then

δID(G) ≤ n(∆ + 1)− 2m

∆− δ + 1
.

Equality holds if and only if di ∈ {∆, δ} for every i = 1, 2, . . . , n.
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The proof of the next corollary of Theorem 2.5 is similar to that of Corollary 2.4,
therefore omitted.

Corollary 2.6. Let G be a connected graph with n ≥ 2 vertices and m edges. Then we have

δID(G) ≤ n2(∆ + δ + 2)2

4(2m− n(δ − 1))(∆− δ + 1)
. (2.13)

Equality holds if and only if G is a regular graph or ∆ = d1 = · · · = dn
2
> dn

2 +1 = · · · =
dn = δ, for even n.

Corollary 2.7. Let G be a connected graph with n ≥ 2 vertices, m edges with the property
δ = 1. Then

δID(G) = ID(G) ≤ n(∆ + 1)− 2m

∆
.

Equality holds if and only if di ∈ {∆, 1} for every i = 1, 2, . . . , n.

Corollary 2.8. Let T be a tree with n ≥ 2 vertices. Then

δID(T ) = ID(T ) ≤ n− n− 2

∆
.

Equality holds if and only if di ∈ {∆, 1} for every i = 1, 2, . . . , n.

The above inequality was proven in [12].

In a similar way as in Theorem 2.3, we get the following result.

Theorem 2.6. Let G be a connected graph with n ≥ 2 vertices. Then

RID(G) +RID(G) ≤ n(∆− δ + 2)

∆− δ + 1
.

Equality holds if and only if di ∈ {∆, δ} for every i = 1, 2, . . . , n.

Corollary 2.9. Let G be a connected graph with n ≥ 2 vertices, m edges with the property
δ = 1. Then

RID(G) +RID(G) ≤ n(∆ + 1)

∆
.

Equality holds if and only if di ∈ {∆, 1} for every i = 1, 2, . . . , n.

Theorem 2.7. Let G be a connected graph with n ≥ 2 vertices and m edges. Then

RID(G) ≤ n2

n(∆ + 1)− 2m

(
1 + α(n)

(∆− δ)2

∆− δ + 1

)
, (2.14)

where

α(n) =
1

4

(
1− (−1)n+1 + 1

2n2

)
.

Equality holds if and only if G is a regular graph.
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Proof. For ai = ci, i = 1, 2, . . . , n, R = ∆− δ + 1, r = 1, the inequality (2.2) becomes

n∑
i=1

ci

n∑
i=1

1

ci
≤ n2

(
1 + α(n)

(∆− δ)2

∆− δ + 1

)
. (2.15)

From the above we have that

(n(∆ + 1)− 2m)RID(G) ≤ n2

(
1 + α(n)

(∆− δ)2

∆− δ + 1

)
,

which yields the inequality (2.14). The equality in (2.15) holds if and only if c1 = c2 = · · · =
cn, that is if and only if d1 = d2 = · · · = dn. This implies that G is a regular graph.

Remark 2.1. Since α(n) ≤ 1
4 , for any n, the inequality (2.14) is stronger than (2.12)

whenever n is odd.

The proof of the next theorem is fully analogous to that of Theorem 2.7, thus
omitted.

Theorem 2.8. Let G be a connected graph with n ≥ 2 vertices and m edges. Then

δID(G) ≤ n2

2m− n(δ − 1)

(
1 + α(n)

(∆− δ)2

∆− δ + 1

)
.

Equality holds if and only if G is a regular graph.

Corollary 2.10. Let G be a connected graph with n ≥ 2 vertices and m edges. Then we
have

RID(G) +RID(G) ≤ n3(∆− δ + 2)

(2m− n(δ − 1))(n(∆ + 1)− 2m)

(
1 + α(n)

(∆− δ)2

∆− δ + 1

)
.

Equality holds if and only if G is a regular graph.

In the next theorem we determine a lower bound for RID(T ), where T is a tree, in
terms of parameters n and ∆.

Theorem 2.9. Let T be a tree with n ≥ 3 vertices. Then

RID(T ) ≥ 1 +
2

∆
+

(n− 3)2

n(∆− 1) + 1− 2∆
. (2.16)

Equality holds if and only if T ∼= Pn, or T ∼= K1,n−1.

Proof. The inequality (2.4) can be considered in the form

n−2∑
i=2

ai

n−2∑
i=2

1

ai
≥ (n− 3)2.

For ai = ci, i = 2, 3, . . . , n− 2, this inequality becomes

n−2∑
i=2

ci

n−2∑
i=2

1

ci
≥ (n− 3)2,
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i.e. (
n∑

i=1

ci − c1 − cn−1 − cn

)(
n∑

i=1

1

ci
− 1

c1
− 1

cn−1
− 1

cn

)
≥ (n− 3)2. (2.17)

Since T is a tree, it has at least two vertices of degree 1, therefore dn−1 = dn = 1, i.e.
cn−1 = cn = ∆. Now (2.17) becomes

(n(∆ + 1)− 2(n− 1)− 1− 2∆)

(
RID(T )− 1− 2

∆

)
≥ (n− 3)2,

from which we arrive at (2.16).
Equality in (2.17) holds if and only if c2 = c3 = · · · = cn−2, that is if and only if

d2 = d3 = · · · = dn−2. Since T is a tree, dn−1 = dn = 1, we have that

∆ + (n− 3)d2 = 2(n− 2).

If d2 = 1, then ∆ = n − 1. If d2 = 2, then ∆ = d1 = d2 = · · · = dn−2 = 2. If d2 ≥ 3, then
∆ ≥ 3, and therefore

3(n− 2) ≤ 2(n− 2),

which does not hold for any n ≥ 3. Finally, equality in (2.16) holds if and only if T ∼= Pn,
or T ∼= K1,n−1, n ≥ 3.

In the following theorem we establish relation between RID(G) and RID
β
(G).

Theorem 2.10. Let G be a connected graph with n ≥ 3 vertices and m edges. Then

RID
β
(G)−RID(G) ≥ (n−∆− 2)n3

(n(∆ + 1)− 2m)2
. (2.18)

Equality holds if and only if G is a regular graph.

Proof. According to (1.8) it holds

RID
β
(G) =

n∑
i=1

(n− 1− di)
1

c2i
=

n∑
i=1

(∆− di + 1−∆+ n− 1− 1)
1

c2i

=

n∑
i=1

(ci + n−∆− 2)
1

c2i
=

n∑
i=1

1

ci
+ (n−∆− 2)

n∑
i=1

1

c2i

= RID(G) + (n−∆− 2)

n∑
i=1

1

c2i
.

(2.19)

On the other hand, for r = 2, xi = 1, ai = ci, i = 1, 2, . . . , n, the inequality (2.1)
transforms into

n∑
i=1

13

c2i
≥

(
n∑

i=1

1

)3

(
n∑

i=1

ci

)2 =
n3

(n(∆ + 1)− 2m)2
. (2.20)

From the above and (2.19) we arrive at (2.18).
Equality in (2.20) holds if and only if 1

c1
= 1

c2
= · · · = 1

cn
, therefore equality in (2.18)

holds if and only if d1 = d2 = · · · = dn, i.e. if and only if G is a regular graph.
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By a similar procedure as in the case of Theorem 2.10, we get the following result.

Theorem 2.11. Let G be a graph with n ≥ 3 vertices and m edges. Then

δID(G) + δID
β
(G) ≥ (n− δ)n3

(2m− n(δ − 1))2
.

Equality holds if and only if G is a regular graph.

Corollary 2.11. Let G be a connected graph of order n ≥ 2 and size m, such that δ = 1.
Then we have

δID(G) + δID
β
(G) = ID(G) + ID(G) ≥ (n− 1)n3

4m2
.

Equality holds if and only if G ∼= n
2K2, n is even.

3 Conclusions

We have obtained upper and lower bounds on the reverse inverse degree, RID(G), and
delta inverse degree, δID(G), topological indices in terms of basic graph parameters,
that is number of vertices, n, number of edges, m, and maximal and minimal vertex
degrees, ∆ and δ. Extremal graphs were determined as well. Then we prove the
Nordhous–Gaddum type inequalities for these indices. At the end we considered a
relationship between RID(G) and δD(G) and the corresponding coindices.
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[1] A. M. Albalahi, I. Ž. Milovanović, Z. Raza, A. Ali, A. E. Hamza, (2022), On the vertex–
degree–function indices of connected (n,m)–graphs of maximum degree at most four,
arXiv preprint, arXiv: 2207.00353.
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