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Extension of Linear Congruential Generator

Atif Avdović

Abstract: Random number generation is a significant research topic, even though there have
already been a lot of papers published about it. Particularly detailed research has been made
about the Linear Congruent Generator (LCG), which is still the most frequently used one.
Research into the LCG has lead to the results in this paper in form of a new, extended LCG
model. We have shown that the extended model has all the necessary features of randomness,
but still a significantly larger period than the standard LCG.
Keywords: extension, linear congruential generator, period, modulus, randomness, number
theory

1 Introduction

The Linear congruential generator (LCG), often referred to as a simple linear congruential
linear generator or Lehmer’s congruential generator, introduced by Lehmer [14], is shown
to be the most commonly used random number generator [4], [8] (p. 11). This is due to
distinctive features of LCG such as simplicity, programmability, and speed. The impor-
tance of these characteristics is discussed by Devroye in his highly important textbook [3].
However, what seemed to be the issue was the period length, which was thus extensively
discussed and researched. However, choice of the multiplicator has been discussed more
than choice of the modulus.

Knuth has analyzed LCG and obtained results that show the optimal modulus for the
multiplicator 2k+1 is a prime number even though the modulus 2p(p > k) yields the fastest
generating [13] (pp. 12-15). Some issues concerning this choice of multiplicator and modu-
lus are discussed in [17]. Namely, Park and Muller [17] have stated that LCG with modulus
231 − 1 and multiplicator 16807 should be taken as a minimal standard in terms of period
and randomness. However, Tang [19] discusses that good randomness and period properties
of LCG are obtained for the modulus values of the ten largest prime numbers smaller than
231. Moreover, Fishman and Moore [5] provided a list of 414 optimal multiplicators for this
modulus. Park and Muller [17] found that the actual number of those multipliers is 410 and
the number 414 in the original paper is stated due to the error.
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Also, modulus 232 is used due to the simplicity of generating numbers. This modulus
has an additional advantage because of odd increments and multiplicators equivalent to
±3mod8 it reaches maximal period [15]. Fishman [6] gave an exhaustive analysis of this
modulus.

Due to the larger period necessity and better computer performance, as well as the need
for better quality of generated numbers, the improvement of LCG performance has been
attempted via modulus increase from the usually used modulus of 231 − 1 to the larger
ones, such as 261 −1, and similar variants [20].

Theoretical background for this generator was not established from the beginning, but
that issue has later been consolidated and widely discussed in many papers [7] as well as
textbooks [13] (pp. 16-21). According to Park and Muller [17] the most complete theory is
developed for multiplicative and mixed LCGs.

Though well researched for a long time, random number generation is in no way a
closed topic due to the constant need for modelling big data because of exponentially grow-
ing number of application areas. This can be seen in recent textbooks such as [16]. New
random number generators, whether they are based on modular reduction or not [9] are still
developed, discussed, tested and compared [10] to other known generators. In this sense
the present paper offers an important improvement of a widely used and researched random
number generator that is still of interest for application as well as further scientific research
such as control charts performance analysis [11, 12], goodness-of-fit tests power analysis
[1, 2], probabilistic topic modelling [18] etc.

In this paper, an extension of the LCG that provides random number sequences of signif-
icantly larger periods is introduced and some of its properties are also given. The following
section provides preliminary facts about the LCG. Section 3 contains some results concern-
ing the extension of LCG and the increase of the period length. In Section 4, concluding
remarks are given.

2 Preliminaries

Definition 2.1. The Linear Congruential Generator is given by the equation

Xn = (aXn−1 + c)modm (1)

where a,c,m,n,X0 are all positive integers, and are called the multiplicator, the increment,
the modulus and the seed respectively. Based on the module properties, we can write n,m ∈
N;a,c ∈ {1,2, ...,m−1};Xi ∈ {0,1,2, ...,m−1}; i = 1,2, .... When c = 0 LCG is called the
Multiplicative Gongruential Generator.

It is important to state the following theorem that Knuth [13] (p. 17) has elaborated on
in detail.

Theorem 2.1. The LCG given with (1) and with seed X0 has a period length of m if and
only if c is relatively prime to m, a−1 is a multiple of every prime divider of m and a−1 is
multiple of 4 when m is multiple of 4.
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The following notions are of importance for multiplicative LCG and its period. Gentle
has offered sources for further reading [8].

Definition 2.2. Number a such that in equation

ak = 1modm

k = φ(m) holds, where φ is Euler’s function (the number of primes less than m), is called
primitive root modulo m.

Theorem 2.2. (Euler-Fermat theorem) If a and m are relatively prime, then

aφ(m) = 1modm

holds.

Lemma 2.1. If for multiplicative LCG Xn = (aXn−1)modm the equation ak = 1modm holds,
then this generator’s period length is not larger than k.

Remark 2.1. Trivial, but an important fact that follows is that for prime m the number of
primitive roots modulo m is φ(m− 1) and if a is such a number, multiplicative LCG can
reach its maximal period φ(m).

3 Results

Definition 3.1. LCG with the Extension is the generator given with the recurrent formula

Xn = ϒ(aXn−1 + c,kXn−1)modm

where ϒ : N2 →N is a linear function, and kXn−1 = ∑
n−1
i=1 I(Xi = Xn−1), for I being the event

indicator, i.e. the random variable that equals 1 when the argument event is true. Value
kXn−1 is called the extension of the generator.

In this paper, some cases of LCG with the Extension and its properties are discussed.
The function ϒ represents a linear function where Xi is its argument, and kXn−1 is used to
modify the LCG recurrent formula, simply by taking a count of the number of occurrences
of generated numbers. The choice of the function ϒ is also discussed.

Case 1. LCG with the additive Extension is given with the recurrent formula:

Xn ≡ (aXn−1 + kXn−1c)modm

Case 2. LCG with the multiplicative Extension is given with the recurrent formula

Xn ≡ (kXn−1aXn−1 + c)modm

Case 3. Extended LCG is given with the recurrent formula

Xn ≡ kXn−1(aXn−1 + c)modm
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Conditions a ̸= 0 and c ̸= 0 are set because otherwise, situations of no interest occur. For
instance, taking c = 0, in the first case, the generator becomes multiplicative congruential
generator. In the second and the third case, once Xi = 0; i = 0,1,2, ...; the Xi+k = 0;k ∈ N
holds. For a = 1 and c = 1, generated numbers cannot be used as random numbers because
the distribution of the obtained sample usually is not a uniform one [13] (pp. 16-17).

Theorem 3.1. Let Xn−1, Xn and Xn+1 be the numbers generated using LCG with the additive
or the multiplicative Extension or using the Extended LCG. The expression

Xn−1 = Xn = Xn+1

is false for any positive integer n and for any choice of generator parameters.

Proof. LCG with additive extension
Assuming the opposite implies that there is a positive integer n0 such that Xn0−1 = Xn0 =
Xn0+1. Then

Xn0 ≡ (aXn0−1 + kXn0−1c)modm ≡ Xn0−1

and
Xn0+1 ≡ (aXn0 + kXn0

c)modm ≡ (aXn0−1 +(kXn0−1 +1)c)modm ≡ Xn0−1

Hence, c = 0, which is impossible because c ∈ {1,2, ...,m−1}.
LCG with multiplicative extension

Assuming the opposite implies that there is a positive integer n0 such that Xn0−1 = Xn0 =
Xn0+1. Then

Xn0 ≡ (akXn0−1Xn0−1 + c)modm ≡ Xn0−1

and
Xn0+1 ≡ (akXn0

Xn0 + c)modm ≡ (a(kXn0−1 +1)Xn0−1 + c)modm ≡ Xn0−1

Hence, a = 0, which is impossible because a ∈ {1,2, ...,m−1}.
Extended LCG

If Xn−1, Xn and Xn+1 are generated using the Extended LCG and if Xn−1 = Xn = Xn+1 is true
for some positive integer n, then

Xn−1 ≡ kXn−1(aXn−1 + c)modm

and
Xn−1 ≡ (kXn−1 +1)(aXn−1 + c)modm

Subtracting these equivalences implies

(aXn−1 + c)modm ≡ 0

Hence there are two possibilities. First that Xn−1 = 0∧c = 0, a = 0∧c = 0, Xn−1 = 0∧a =
0∧c= 0 is true which is impossible because on the definition of the Extended LCG. Another
possibility is that

aXn−1 + c = qm;q ∈ N⇒ Xn−1 =
qm− c

a
∈ {1, ...,m−1}
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(if Xn−1 = 0 then c = 0 again). In that case,

Xn = 0 ≡ kXn−1(a
qm− c

a
+ c)modm ≡ 0

which means Xn−1 ̸= Xn, so the contradiction to the initial assumption occurs. Therefore,
the statement of the theorem is proven.

Theorem 3.2. Let X and Y be the numbers generated respectively using LCG with the
additive Extension, and let kX = min{d ∈ N|(aX +dc)modm ≡ Y}. Then (Xn−1,Xn) =
(X ,Y ) is true for some positive integer n if and only if kXn−1 = lm+ kX ; l ∈ N0. If kXn−1 >
kX , then l is a positive integer. The same holds for LCG with the multiplicative Exten-
sion where kX = min{d ∈ N|(daX + c)modm ≡ Y}, and the Extended LCG where kX =
min{d ∈ N|d(aX + c)modm ≡ Y}.

Proof. LCG with additive extension:
(⇒): Let (Xn−1,Xn) = (X ,Y ). Then

Xn ≡ (aXn−1 + kXn−1c)modm ⇔ Y ≡ (aX + kXn−1c)modm

Since kXn−1 ∈N, there are numbers l ∈N0 and r ∈ {0,1, ...,m−1} such that kXn−1 = lm+ r.
Hence,

Y ≡ (aX +(lm+ r)c)modm ≡ (aX + rc)modm (2)

There is no positive integer smaller than r which can satisfy (2), so kX = r. Obviously, if
kXn−1 > kX , then l ∈ N.
(⇐): Let Xn−1 = X for some positive integer n, and let kXn−1 = lm+ kX ; l ∈ N0. Then

Xn ≡ (aXn−1 + kXn−1c)modm ≡ (aX +(lm+ kX)c)modm ≡ (aX + kX c)modm ≡ Y

Hence, because Xn and Y are generated with LCG with the additive Extension, Xn = Y , i.e.
(Xn−1,Xn) = (X ,Y ).

LCG with multiplicative extension
(⇒): Let (Xn−1,Xn) = (X ,Y ). Then

Xn ≡ (akXn−1Xn−1 + c)modm ⇔ Y ≡ (akXn−1X + c)modm

Since kXn−1 ∈ N there are numbers l ∈ N0 and r ∈ {0,1, ...,m−1} such that kXn−1 = lm+ r.
Hence,

Y ≡ (a(lm+ r)X + c)modm ≡ (arX + c)modm (3)

There is no positive integer smaller than r which can satisfy (3), so kX = r. Obviously, if
kXn−1 > kX , then l ∈ N.
(⇐): Let Xn−1 = X for some positive integer n, and let kXn−1 = lm+ kX ; l ∈ N0. Then

Xn ≡ (akXn−1Xn−1 + c)modm ≡ (a(lm+ kX)X + c)modm ≡ (akX X + c)modm ≡ Y
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Hence, because Xn and Y are generated with LCG with the multiplicative Extension, Xn =Y ,
i.e. (Xn−1,Xn) = (X ,Y ).

Extended LCG
(⇒): Let (Xn−1,Xn) = (X ,Y ). Then

Xn ≡ kXn−1(aXn−1 + c)modm ⇔ Y ≡ kXn−1(aX + c)modm

Since kXn−1 ∈ N there are numbers l ∈ N0 and r ∈ {0,1, ...,m−1} such that kXn−1 = lm+ r.
Hence,

Y ≡ (lm+ r)(aX + c)modm ≡ r(aX + c)modm (4)

There is no positive integer smaller than r which can satisfy (4), so kX = r. Obviously, if
kXn−1 > kX , then l ∈ N.
(⇐): Let Xn−1 = X for some positive integer n, and let kXn−1 = lm+ kX ; l ∈ N0. Then

Xn ≡ kXn−1(aXn−1 + c)modm ≡ (lm+ kX)(aX + c)modm ≡ kX(aX + c)modm ≡ Y

Hence, because Xn and Y are generated with LCG with the multiplicative Extension, Xn =Y ,
i.e. (Xn−1,Xn) = (X ,Y ).

Remark 3.1. The number kX belongs to the set {0,1, ...,m−1} because otherwise it could
be written as kX = lm+ r; l ∈ N;r ∈ {0,1, ...,m−1} and then

Y ≡ (aX + kX c)modm ≡ (aX +(lm+ r)c)modm ≡ (aX + rc)modm

would hold, which means r < kX where kX is minimal such a value. That is impossible. The
same goes for Case 2 and Case 3 of the generator.

Theorems 3.1 and 3.2 show that the extension LCG generates numbers with no lose of
property of randomness.

The following theorem gives insight into the extension’s impact on the period length of
LCG.

Theorem 3.3. Let p ̸= 2 be a prime, c relatively prime to pk and

hxn =

{
kXn , kXn ̸= p
kXn +1, kXn = p

.

Generator given with
Xn+1 = ((pl +1)Xn +hXnc)modpk, (5)

for l ∈ {1, ...,k−1},k ∈ N has minimal period legnth pks +di, and maximal period length
∑

v
i=1(pks + di), where s = ∑

m−1
j=1 I( j ̸= pl, l ∈ {1,2, ..., pk − 1}), di is period length of gen-

erator given with Xn+1 = (pl + 1)Xnmodpk and v is the number of its different variates
generated last before reaching its period for differents seeds X0 = i, i = 0, ..., pk −1 (v is not
larger than pk).
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Proof. For a = pl + 1 number a− 1 = pl is a multiple of m = pk. Since c is relatively
prime to pk, all of the numbers ( j · c)modpk, j = 1, ..., pk − 1, j ̸= pl, l = 1, ..., pk−1 are
relatively prime to pk, and thereby so are the numbers (hXn · c)modm. Also, the condition
p ̸= 2 indicates both a− 1 and pk are not multiples of 4. Thus, generators obtained from
(5) when hXn is fixed, satisfy the conditions of Theorem 2.1. Hence, each one of them
reaches its maximal possible period of m = pk for any seed. Generator (5) is constructed
by these s generators performing respectively. After each of these generators reaches a
full period of pk, hXn = pk is reached, thus the following numbers to be generated are the
result of generator Xn+1 = (pl + 1)Xnmodpk which has period denoted with di for seed
X0 = i, i ∈ {0,1, ..., pk −1}. Hence, generator (5) has period length pks +di if Xpks+d = X0
because the same generator is obtained when hXn = m+ 1. Otherwise, the same process
repeats for different seeds, not more than v times.

Remark 3.2. More precise information on di, i = 1, ...,v and v can be known by discussing
a and pk based on the Definition 2.1, Theorem 2.2, Lemma 2.1 and Remark 2.1.

4 Conclusion

This paper gives an improvement of most known and used random number generators based
on modular reduction by introducing a new variable called the extension of the generator.
The discussion on the importance of the topic and existing results is concise yet covers all
the notions of importance. Sources that had great impact over time are referred to, as well
as to some new high-quality manuscripts that represent an important connection of well
researched notions with the ones that are to be discovered and improved. Afterwards, some
important, well known facts and statements are mentioned since some results of this paper
being their consequence. Finally, the results concerning the characteristics of the generators
obtained by using the extension as well as the period length increase caused by extension,
are given and briefly discussed.

Future work on Extended LCG will consist of investigation of randomness and pe-
riod length properties, simulation and testing studies and similar empirical evidence issues,
cryptography application possibilities and quality of encryption, as well as discussion on
cracking this generator and comparative studies.
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