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Optimizing Space-Time Parameters of Hexagonal
Systolic Arrays

I.Ž. Milovanović, E. I. Milovanović, T. I. Tokić, M. K. Stojčev, N. M. Stojanović

Abstract:
In this paper we synthesize a family of hexagonal arrays, SA(r), that implement matrix

multiplication. We have observed that the execution time of hexagonal array, that has minimal
number of processing elements for a given problem size, can be reduced if the number of PEs is
increased. Since the execution time and the number of PEs are two most important performance
measures of the systolic array, we take their product AT 2, AT 2 = Ωr(n)T 2

exe, to compare the
arrays from this family. With respect to this performance measure the best array is obtained for
r = [n/2], where n is a dimension of square matrices while r indicates the extension, in terms
of rows, of the array that has minimal number of processing elements for a given problem size.
Keywords: systolic arrays, space-time parameters,

1 Introduction

High-performance, special purpose computer systems are typically used to meet specific
application requirements or to off-load computations that are especially taxing to general
purpose computers. As hardware cost and size continue to drop and processing require-
ments become well-understood, in areas such as signal and image processing, more special-
purpose systems are being constructed. A group of researchers headed by H. T. Kung, has
introduced the systolic concept for parallel architectures in the period of 1978-1982. The
major features of adopting systolic arrays (SA) for special purpose processing architectures
are: simple and regular design, concurrency and communications and balancing computa-
tion with the I/O.

Computational tasks can be conceptually classified into two families: compute-bound
computations and I/O-bound computations. For example, matrix multiplication represents
compute-bound computations. On the other hand, adding two matrices is I/O-bound task.
Speeding up a compute-bound computation, may often be accomplished in a relatively
simple and inexpensive manner, that is by the systolic approach, without increasing I/O
requirements.
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To handle matrix multiplication, hexagonal systolic array has been proposed by Kung
and Leiserson [1, 2]. This array has been designed in an add-hoc manner. Therefore, re-
search efforts in this area were directed toward the development of a general methodology
for mapping high-level computations into hardware structures. Many such methodologies
have been proposed in the last decade [2]-[17]. Most are based on the concept of depen-
dence vectors to order in time and space the index points representing the algorithm. The
ordered index points are represented by nodes in a dependence graph. This graph can be
projected along defined directions to obtain the target architecture. In the case of matrix
multiplication, there are 19 allowable projection directions. Ten of them give planar SAs
which can be classified into three classes according to the interconnection pattern between
the processing elements (PE). Among them are hexagonal SAs, and among them the ar-
ray proposed in [1]. The array proposed in [1] is especially attractive since it can be used
for fault-tolerant matrix multiplication with minimal hardware overhead (see, for example
[18]-[21]). The arrays obtained by the systematic methodologies are not always optimal
with respect to particular space, time or space-time parameters. Therefore a considerable
research effort was directed towards optimizing some of them (see, for example [8]-[12],
[16], [21]-[23]).

In [9] (see also [10, 11, 12]) a methodology for designing planar SAs with optimal
number of PEs for a given problem size, that implements matrix multiplication algorithm,
was developed. Hexagonal array obtained by that methodology has

Ω(n) = n2 (1)

processing elements, where n is a dimension of square matrices. For that number of PEs
the execution time has been minimized, and is equal to

Texe =

{
2n−1, if nmod3 ̸= 0.
2n, if nmod3 = 0.

(2)

Hexagonal array synthesized in [11] has the same number of PEs and Texe as the one from
[9], but its geometric and chip area were optimized. This array will be taken as a reference
array in this paper. Since the execution time and the number of PEs are two most important
performance measures of the SA, we take their product AT 2, AT 2 = Ω(n)T 2

exe, to compare
the arrays. AT 2 measure of the reference array is

AT 2 =

{
n2(2n−1)2, if nmod3 ̸= 0

n2(2n)2, if nmod3 = 0
(3)

and it is not a minimal possible. In this paper we will synthesize a family of hexagonal
arrays, try to balance between number of PEs and execution time, and find out the array
with minimal AT 2 measure.

2 Main result

A bidirectional 1D SA that implements matrix-vector multiplication with optimal number
of PEs was designed in [27]. In [25] (see also [26]) it was observed that if the number of
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PEs in the array obtained in [27] is increased for one, the execution time is decreased for
one time unit. It was proved that this procedure can be applied consecutively n− 1 times,
where n is a dimension of square matrix. This fact has inspired us to find out if this idea
can be applied on hexagonal array for matrix multiplication.

We start from the array obtained in [11]. Without deterioring generality, we will assume
that nmod3 ̸= 0. Number of PEs and execution time of this array are given by (1) and
(2), respectively. If we increase the number of PEs for n in the direction of C data flow,
C = A×B, (see Fig. 1), it can be concluded that the execution time is decreased for one time
unit. Of course, we have to reschedule input elements A and B to preserve the correctness
of matrix multiplication.

Fig. 1. Hexagonal SA expanded for n PEs in the direction of C data flow. Additional processing elements are
denoted by dashed squares.

Actually, we have obtained hexagonal SA that has Ω(n) = n2+n PEs and T (1)
exe = 2n−2.

The question is whether this procedure can be applied consecutively up to the problem
size n? Therefore we perform the following analysis. Suppose that we have expanded the
reference array enough, such that first three rows in C stream begin with the computation
simultaneously. Since the problem size is n, i.e. there are n inner products, the first row in
C stream will be computed after n time units. Because of the SA topology and pipelining,
in the (n+1)-th time unit, some elements from A and B streams would form partial product
of some elements from the third row of C stream, which has already been computed, thus
affecting the correctness of the computation. Therefore we conclude that the number of
rows, s, in C stream that may begin with the computation simultaneously safely must be
s < 3. Having this in mind we will derive the upper bound of the array extension.

Denote by r, r ∈ No, the number of rows, each of them containing n PEs, that have been
added to the reference array in the direction of C stream, similarly as in Fig. 1. This means
that now we have SA with Ωp(n) = n2 + rn PEs, and we expect to achieve the execution
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time of T (r)
exe = 2n− r−1 time units. Let us find out the upper bound for r. The lower bound

is obviously r = 0, i.e. it is the unextended array from [11]. To achieve T (r)
exe = 2n−r−1 the

deadline for the last row of C stream to begin with the computation is in the (n− r−1)-th
time instance. On the other hand, this requires that in the first time instance s = 2r−n+2
rows in C stream begin with the computation. Thus, we obtain

s =
{

1, if 2r ≤ n−1
2r−n+2, if 2r ≥ n−1

. (4)

According to the previously estimated condition s < 3, and (4), we conclude that the fol-
lowing must be satisfied

2r < n+1,

i.e. the upper bound for r is

r =
[n

2

]
.

Thus we have proved the following result.

Theorem 1 For each r, 0 ≤ r ≤ [n
2 ] there exists planar hexagonal systolic array with

Ωr(n) = n(n+ r)

processing elements, that implements matrix multiplication algorithm for time

Texe =

{
2n− r−1, if nmod3 ̸= 0

2n− r, if nmod3 = 0
,

where n is a dimension of square matrices.

Corollary 1 According to Theorem 1, for r = 0 the reference array from [11] is obtained.

Remark 1 Since the upper bound for r is [n
2 ], it is not possible to design planar hexagonal

array that performs matrix multiplication for time Texe = n, i.e. Texe = n+1. This is quite
unexpected having in mind the results from [26].

According to the Theorem 1, a class of hexagonal arrays, SA(r), can be synthesized.
Let us find out which of these arrays has the minimal AT 2 measure. Therefore we consider
the function

φ(r) = n(n+ r)(2n− r−1)2, 0 ≤ r ≤
[n

2

]
. (5)

Without affecting the generality, we again consider the case nmod3 ̸= 0. Graphic of the
function φ(r) is depicted in Fig. 2. φ(r) is monotone decreasing and reaches its minimum
for r = [n

2 ]. This implies that the following is valid.
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Fig. 2. Function φ(r)

Theorem 2 Planar hexagonal systolic array with minimal AT 2 measure that implements
matrix multiplication has the following features

Ω(n) = n(n+
[n

2
]
,

Texe =

{
2n−

[n
2

]
−1, if nmod3 ̸= 0

2n−
[

n
2

]
, if nmod3 = 0

.

Corollary 2 It is not difficult to conclude that reference array from [11] has the worst AT 2

measure compared to the arrays obtained for r = 1,2, . . . , [n
2 ].

Data flow in hexagonal arrays for n = 4 and r = 0,1,2 are given in Figures 3, 4 and 5,
respectively. The array in Fig. 5 is optimal with respect to AT 2 measure when n = 4.

Fig. 3. Data flow in unextended array for n = 4
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Fig. 4. Dataflow in the array expanded with one row (r = 1) of processing elements when n = 4

Fig. 5. Dataflow in the array expanded with two rows (r = 2) of processing elements when n = 4.
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3 Conclusion

We have observed that the execution time of hexagonal array that implements matrix mul-
tiplication can be reduced if the number of PEs is increased. Therefore in this paper we
have synthesized a family of systolic arrays, SA(r). We have estimated the lower and upper
bounds for r, i.e. 0 ≤ r ≤ [n/2]. The number of PEs and execution time of matrix multipli-
cation in the family SA(r) are given in Theorem 1. Since the execution time and the number
of PEs are two most important performance measures of the SA, we take their product AT 2,
AT 2 = Ωr(n)T 2

exe, to compare the arrays from this family. With respect to this performance
measure the best array is obtained for r = [n/2].
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