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A Penteract Partition by means of the Optimal Subdivision of
Cells

Miroslav S. Petrov, Todor D. Todorov

Abstract: Freudental’s algorithm obtained way back in early forties have been traditionally
used for simplicial triangulating of the hypercube. The main advantage of this algorithm is
that it only generates one congruence class. Unfortunately, Freudental’s algorithm is not opti-
mal with respect to the measure of degeneracy. The multigrid methods require the degeneracy
measure to be as small as possible. The minimal subdivision in the 3-dimensional case and
the uniform tesseract corner subdivision in the 4-dimensional case are optimal in regards the
measure of degeneracy and multigrid applications. The question about the optimal refinement
strategy in more dimensional cases is still an open problem. This paper deals with a penteract
subdivision with degeneracy measure much better than one obtained by the Freudental algo-
rithm.
Keywords: Measure of degeneracy, congruence classes, refinement strategies.

1 Introduction

The rapid development of the multidimensional geometry begun after the book of Forsyth
[4] had been published. The multidimensional Euclidean geometry have been widely used
in various engineering applications [5]. Typical examples are some problems in the space-
time continuum and the theory of subatomic particles [7]. The finite element multigrid
method for solving multidimensional boundary and eigenvalue problems needs stable sub-
divisions of simply connected bounded domains in Rn. The subdivision of the n-dimensional
cube plays an important role in dividing canonical domains [8, 9]. Freudental’s subdivision
of the cube in combination with the red refinement strategy is widely used by researchers
devoted to multigrid methods. Many authors [2] have used combinatorial approaches to
obtain stable subdivisions of the cube. Todorov [9] and Petrov and Todorov [8] have proved
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that the Freudental partition of the cube is not optimal with respect to the measure of de-
generacy in the 3-dimensional and 4-dimensional cases. Moreover, the optimal refinement
strategies in these cases can not be obtained by combinatorial approaches.

In this paper we show that the same situation is in the 5-dimensional case. We divide
the unit penteract into a set of identical tesseract base hyperpyramids. Each hyperpyramid
is partitioned into 24 hexatera by means of optimal triangulation of the penteract boundary.
Thus we obtain a new division L of the penteract called the cell centered partition. The
division operator L generates two and only two congruence classes with a degeneracy
measure much better than the one obtained by the Freudental algorithm [3].

2 The cell centered penteract division

The denotation [a1,a2, ...,an] stands for a convex polytope with vertices ai i = 1,2, ...,n.
We define the unit tesseract T1 = {x | 0≤ xi ≤ 1, i = 1,2,3,4, x5 = 0} with vertices:

a1(0,0,0,0,0), a2(1,0,0,0,0), a3(0,1,0,0,0), a4(0,0,1,0,0),

Fig. 1. The 5D cube P left and the cell T1 right.
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Fig. 2. A hexateron obtained by an internal tesseract corner left and another one built on external pentatope
right.

a5(1,1,0,0,0), a6(0,1,1,0,0), a7(1,0,1,0,0), a8(1,1,1,0,0),

a9(0,0,0,1,0), a10(1,0,0,1,0), a11(0,1,0,1,0), a12(0,0,1,1,0),

a13(1,1,0,1,0), a14(0,1,1,1,0), a15(1,0,1,1,0), a16(1,1,1,1,0).

The tesseract T10 = [ai = ai−16 + (0,0,0,0,1), i = 17,18, ...,32] is determined by T10 =
T1+(0,0,0,0,1). The penteract P = [ai, i = 1,2, ...,32], Figure 1 left is the object of inves-
tigation in this section. We denote the penteract center by a43
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of the cell T1 by a33
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)
, Figure 1 right. The centers of cells Ti, i = 2,3, ..,10 are

denoted by ai, i = 34, ...,42 correspondingly.
Let E be a partition operator defined by

E P = {Hi | Hi = [V (Ti),a43], i = 1,2, ...,10} ,

where V (G) is the set of all vertices of the polytope G. The polytopes Hi are ten identical
tesseract base hyperpyramids with apex the penteract center. Following Petrov and Todorov
[8] we divide the tesseract Ti optimally with respect to the measure of degeneracy. Let
T be the partition technique [8] subdividing Ti uniformly into 24 tesseract corners Ci j,
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i = 1,2, ...,10 and j = 1,2, ...,24. Despite all 24 elements Ci j, j = 1,2, ...,24 are from the
same class we distinguish two kind of pentatopes belonging to T Ti:

(i) tesseract corners that satisfy ai+32 ∈V (Ci j);
(ii) elements that ai+32 6∈V (Ci j).

We call the first kind of tesseract corners internal elements and the second kind of pen-
tatopes external finite elements. An internal element C11 = [a1,a5,a6,a7,a33] and an exter-
nal one C12 = [a5,a6,a7,a8,a16] are presented in Figure 2. The subdivision of the boundary
is determined by T ∂P=

⋃10
i=1 T Ti. The set of all internal pentatopes in T ∂P and the set of

all external tesseract corners in T ∂P are denoted by I and X . We define a division operator
B for all hyperpyramids Hi as follows

BHi =
{

Ki j | Ki j = [V (Ci j),a43], j = 1,2, ...,24
}
.

Definition 1. The cell centered penteract subdivision operator L is defined by L =B◦E .

Theorem 1. The operator L generates two and only two classes of similarity.

Proof. We suppose that the bases of all tesseract corners Ci j are regular pyramids.
The subdivision of the penteract P is executed in two steps. First, we divide P into ten
hyperpyramids with tesseract bases and apex a43, and second, we refine each hyperpyramid
into set of simplices. The sets

I = {K = [V (C),a43], C ∈ I} ,

X = {K = [V (C),a43], C ∈ X}

are extensions of the sets I and X in the five-dimensional space. Note that P = I
⋃

X and
I
⋂

X = /0.
We aim to prove that all elements of X are from the same class. Let us consider an

arbitrary hexateron belonging to X . For definiteness let it be K12 = [a5,a6,a7,a8,a16,a43],
Figure 2, right. The base C12 is a tesseract corner with base edges equal to

√
2 and lateral

edges equal to 1. On the other hand all lateral edges of hexateron K12 are equal to
√

5
2 .

This construction rule is valid for all elements of X . That is why all elements of X are
geometrically similar.

It remains to prove that the elements of I belong to one congruence class. We consider
an arbitrary hexateron belonging to I , for instance K11 = [a1,a5,a6,a7, a33, a43], Figure 2,
left. The base of K11 is the tesseract corner C11 with apex a33. The lengths of all base edges
of C11 are equal to

√
2 and the lengths of all lateral edges are 1. There is a lateral edge of

K11 with a length 1
2 , which is perpendicular to the base C11. The lengths of all other lateral

edges are equal to
√

5
2 . Thus can be constructed all elements of I . Therefore they are from

the same class.2

Property 1. All elements of P have the same volume.
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Division operator δ ν p
FP 8.56062 1 120
L P 7.41421 2 240

Table 1. A comparison between different division operators.

Proof. The distance from the penteract center to each cell is the same. Moreover, all
elements of T ∂P are from the same class and have the same volume [8]. It remains only
to apply the formula for volume of a hexateron [6]

volK =
h.volB

5
,

where K ∈L P, B ∈T ∂P and h is the height of K.2
We denote the measure of degeneracy of a set of finite elements Z by δ (Z), the num-

ber of congruence classes by ν(Z) and the cardinality of Z by p. By direct straight line
computations we obtain the results in Table 1, where F is the hypercube subdivision tech-
nique introduced by Freudental [3]. The cell centered partition creates only two congruence
classes with measure of degeneracy δ (I ) = 6.24264, CardI = 160 and δ (X ) = 7.41421,
CardX = 80.

3 Conclusion

A new two level partition of the five-dimensional hypercube is obtained. The cell centered
partition method L has the following advantages:

(i) L generates a uniform triangulation of the boundary with the optimal measure of
degeneracy;

(ii) the division technique L is superior than the Freudental’s partition technique re-
garding the degeneracy measure δ (L P)< δ (FP);

(iii) all elements of L P have the same volume;
(iv) it is enough to triangulate just one of the tenth hyperpyramids Hi since the triangu-

lations of the others can be obtained as images of affine transformations.
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