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Some properties of meromorphic solutions of higher order linear
difference equations

B. Belaı̈di, Y. Benkarouba

Abstract: In this paper, we investigate the growth of solutions of the linear difference equations

Ak(z) f (z+ ck)+Ak−1(z) f (z+ ck−1)+ · · ·+A1(z) f (z+ c1)+A0(z) f (z) = 0,

Ak(z) f (z+ ck)+Ak−1(z) f (z+ ck−1)+ · · ·+A1(z) f (z+ c1)+A0(z) f (z) = F(z),

where Ak(z), · · · ,A0(z), F(z)(̸≡ 0) are entire functions and ck, · · · ,c1 are distinct non-zero com-
plex numbers. We extend some precedent results due to Liu and Mao [15].
Keywords: Complex linear difference equation, meromorphic solution, iterated p−order, it-
erated p−type.

1 Introduction and main results

In this paper, we use the standard notations of Nevanlinna’s value distribution theory (see
[7] , [11] , [17]). Recently, study of properties of meromorphic solutions of complex differ-
ence equations have become a subject of great interest from the viewpoint of Nevanlinna
theory, due to the apparent role of the existence of such solutions of finite order for the in-
tegrability of discrete difference equations (see, e.g., [1,4,5,13,14,15,16,18,19]). The key
result here is the difference analogue of the lemma on the logarithmic derivative obtained
by Halburd-Korhonen [9,10] and Chiang-Feng [6], independently.
In the rest of the paper, the linear measure of a set E ⊂ (0,+∞) is defined as

m(E) =
∫ +∞

0
χE(t)dt,

and the logarithmic measure of a set F ⊂ (1,+∞) is defined by

lm(F) =
∫ +∞

1

χF(t)
t

dt,
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where χH(t) is the characteristic function of a set H. Moreover, the upper and the lower
densities of a set E ⊂ (0,+∞) are defined respectively by

densE = limsup
r→+∞

m(E ∩ [0,r])
r

,

densE = liminf
r→+∞

m(E ∩ [0,r])
r

,

and the upper and the lower logarithmic densities of a set F ⊂ (1,+∞) are defined respec-
tively by

logdensF = limsup
r→+∞

lm(F ∩ [1,r])
logr

,

logdensF = liminf
r→+∞

lm(F ∩ [1,r])
logr

.

Proposition 1.1 [2] For all H ⊂ [1,+∞) the following statements hold :
(i) If lm(H) = ∞, then m(H) = ∞;
(ii) If densH > 0, then m(H) = ∞;
(iii) If logdensH > 0, then lm(H) = ∞.

In the following, we recall some fundamental definitions which are used later.

For all r ∈ R, we define exp1 r := er and expp+1 r := exp
(
expp r

)
, p ∈ N. We also define

for all r sufficiently large log1 r := logr and logp+1 r := log
(
logp r

)
, p ∈ N. Moreover, we

denote by exp0 r := r, log0 r := r, log−1 r := exp1 r and exp−1 r := log1 r, see [12] .

Definition 1.1 [12] Let p ≥ 1 be an integer. Then, the iterated p-order ρp( f ) of a meromor-
phic function f is defined by

ρp( f ) = limsup
r→+∞

logp T (r, f )
logr

,

where T (r, f ) is the characteristic function of Nevanlinna (see, [7,11,16]). For p = 1, this
notation is called order and hyper-order when p = 2. The iterated p-order ρp( f ) of an entire
function f is defined by

ρp( f ) = limsup
r→+∞

logp T (r, f )
logr

= limsup
r→+∞

logp+1 M(r, f )
logr

,

where M(r, f ) = max|z|=r | f (z)|.
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Definition 1.2 [3] Let f be a meromorphic function of iterated p-order (0 < ρp( f ) < ∞),
the iterated p−type τp( f ) of f is defined by

τp( f ) = limsup
r→+∞

logp−1 T (r, f )

rρp( f )
(p ≥ 1 an integer) .

In recent paper [6], Chiang and Feng investigated meromorphic solutions of the linear
difference equation

Ak(z) f (z+ k)+Ak−1(z) f (z+ k−1)+ · · ·+A1(z) f (z+1)+A0(z) f (z) = 0, (1.1)

where Ak(z), · · · ;A0(z) are entire functions and proved the following result.

Theorem A [6] Let A0(z), · · · ,Ak(z) be polynomials. If there exists an integer l (0 ≤ l ≤ k)
such that

deg(Al)> max
0≤l≤k, j ̸=l

{deg(A j)}

holds, then every meromorphic solution f (̸≡ 0) of equation (1.1) satisfies ρ( f )≥ 1, where
deg(Al) denotes the degree of the polynomial Al .

Theorem B [6] Let A0(z), · · · ,Ak(z) be entire functions. If there exists an integer l (0 ≤ l ≤
k) such that

ρ(Al)> max
0≤l≤k, j ̸=l

{ρ(A j)},

holds, then every meromorphic solution f (̸≡ 0) of equation (1.1) satisfies ρ( f )≥ ρ(Al)+1.

Note that in Theorems A and B, equation (1.1) has only one dominating coefficient Al .
For the case when there is no dominating coefficient and all coefficients are polynomials in
equation (1.1), Chen [4] obtained an improvement of Theorem A.

Theorem C [4] Let A0(z), · · · ,Ak(z) be polynomials such that

deg(A0 + · · ·+Ak) = max
0≤ j≤k

{deg(A j)} ≥ 1.

Then every finite order meromorphic solution f (̸≡ 0) of equation (1.1) satisfies ρ( f )≥ 1.

For the case when there is more than one of coefficients which have the maximal order,
Laine and Yang [13] obtained the following result.
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Theorem D [13] Let A0(z), · · · ,Ak(z) be entire functions of finite order such that among
those having the maximal order

ρ = max
0≤ j≤k

{ρ(A j)},

exactly one has its type strictly greater than the others. Then for every meromorphic solu-
tion f (̸≡ 0) of equation

Ak(z) f (z+ ck)+Ak−1(z) f (z+ ck−1)+ · · ·+A1(z) f (z+ c1)+A0(z) f (z) = 0, (1.2)

where ck, · · · ,c1 are non-zero distinct complex numbers, we have

ρ( f )≥ ρ +1.

In the present paper, we continue to study the growth of solutions of some linear differ-
ence equations, we improve and extend Theorem A, Theorem B, Theorem C and Theorem
D by using the concept of the iterated p−order for equation (1.2). We obtain the following
results.

Theorem 1.1 Let H be a complex set satisfying logdens{r = |z| : z ∈ H} > 0, and let
A0(z), · · · ,Ak(z) be entire functions of iterated p−order satisfying max0≤ j≤k{ρp(A j)} ≤ ρ .
If there exists an integer l (0 ≤ l ≤ k) such that for some constants 0 ≤ β < α and δ
(0 < δ < ρ) sufficiently small, we have

|Al(z)| ≥ expp{αrρ−δ}, (1.3)

|A j(z)| ≤ expp{β rρ−δ}, j = 0, · · · ,k, j ̸= l, (1.4)

as z → ∞ for z ∈ H, then every meromorphic solution f (̸≡ 0) of equation (1.2) satisfies{
ρ( f )≥ ρ(Al)+1, for p = 1,

ρp( f )≥ ρp(Al), for p ≥ 2.

Remark 1.1 The Theorem 1.1 was obtained by Liu and Mao [15] when p = 1 and for
equation (1.1) with H is a complex set satisfying dens{r = |z| : z ∈ H}> 0.

Theorem 1.2 Let H be a complex set satisfying logdens{r = |z| : z ∈ H} > 0, and let
A0(z), · · · ,Ak(z) be entire functions satisfying max0≤ j≤k{ρp(A j)} ≤ ρ . If there exists an
integer l (0 ≤ l ≤ k) such that for some constants 0 ≤ β < α and δ (0 < δ < ρ) sufficiently
small, we have

T (r,Al)≥ expp−1{αrρ−δ}, (1.5)

T (r,A j)≤ expp−1{β rρ−δ}, ( j = 0, · · · ,k, j ̸= l), (1.6)
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as z → ∞ for z ∈ H. Then the following statements hold:
(i) If p = 1 and 0 ≤ kβ < α, then every meromorphic solution f ̸≡ 0 of equation (1.2)
satisfies ρ( f )≥ ρ(Al)+1.
(ii) If p≥ 2 and 0≤ β <α , then every meromorphic solution f ̸≡ 0 of equation (1.2) satisfies
ρp( f )≥ ρp(Al).

In the following theorem, we will add a condition on the type. When there exists more
than one coefficient having the order ∞ in equation (1.2), we obtain the following result.
Note that in this case Theorem D is invalid for p = 1.

Theorem 1.3 Let A0(z), · · · ,Ak(z) be entire functions, and let p ≥ 1 be an integer. If there
exists an integer l (0 ≤ l ≤ k) such that

max{ρp+1(A j) : j = 0, · · · ,k, j ̸= l} ≤ ρp+1(Al), (0 < ρp+1(Al)< ∞),

max
{

τp+1(A j) : ρp+1(A j) = ρp+1(Al)
}
< τp+1(Al), (0 < τp+1(Al)< ∞),

then every meromorphic solution f (̸≡ 0) of equation (1.2) satisfies

ρp( f ) = ∞ and ρp+1( f )≥ ρp+1(Al).

Next we consider the properties of meromorphic solutions of the non-homogeneous
linear difference equation corresponding to (1.2)

Ak(z) f (z+ ck)+ · · ·+A1(z) f (z+ c1)+A0(z) f (z) = F(z), (1.7)

where where Ak(z), · · · ,A0(z), F(z)(̸≡ 0) are entire functions and ck, · · · ,c1 are distinct non-
zero complex numbers.

Theorem 1.4 Let A j(z)( j = 0, · · · ,k) satisfy the hypothesis of Theorem 1.3, and let F(z) be
an entire function. Then
(i) If ρp+1(F) < ρp+1(Al) or ρp+1(F) = ρp+1(Al), τp+1(F) < τp+1(Al), then every mero-
morphic solution f (̸≡ 0) of equation (1.7) satisfies

ρp( f ) = ∞ and ρp+1( f )≥ ρp+1(Al).

(ii) If ρp+1(F) > ρp+1(Al), then every meromorphic solution f (̸≡ 0) of equation (1.7)
satisfies

ρp( f ) = ∞ and ρp+1( f )≥ ρp+1(F).

Remark 1.2 The Theorems 1.3 and 1.4 were obtained by Liu and Mao [15] when p = 1 and
for equation (1.1) . For some related results when A j(z)( j = 0, · · · ,k), F(z) are meromor-
phic functions, see [19] .
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2 Preliminary Lemmas

Our proofs depend mainly upon the following lemmas.

Lemma 2.1 [6] Let f be a meromorphic function, η a non-zero complex number, and
let γ > 1, and ε > 0 be given real constants. Then there exists a subset E1 ⊂ (1,+∞) of
finite logarithmic measure, and a constant A depending only on γ and η , such that for all
|z|= r /∈ E1 ∪ [0,1], we have∣∣∣∣log

∣∣∣∣ f (z+η)

f (z)

∣∣∣∣∣∣∣∣≤ A
(

T (γr, f )
r

+
n(γr)

r
logγ r log+ n(γr)

)
,

where n(t) = n(t,∞, f )+n(t,∞,1/ f ).

Lemma 2.2 [8] Let f be a transcendental meromorphic function, let j be non-negative
integer, let x be a value in the extended complex plane, and let µ > 1 be a real constant.
Then there exists a constant R > 0 such that for all r > R, we have

n
(

r,x, f ( j)
)
≤ 2 j+6

log µ
T (µr, f ) . (2.1)

Lemma 2.3 Let f be a meromorphic function, η a non-zero complex number, and ε > 0 be
given real constants. Then there exists a subset E2 ⊂ (1,+∞) of finite logarithmic measure,
such that if f has finite iterated p−order ρp( f ) = ρ , then for all |z| = r ̸∈ [0,1]∪E2, we
have
(i) If p = 1, then

exp{−rρ−1+ε} ≤
∣∣∣∣ f (z+η)

f (z)

∣∣∣∣≤ exp{rρ−1+ε}. (2.2)

(ii) If p ≥ 2, then

expp{−rρ+ε} ≤
∣∣∣∣ f (z+η)

f (z)

∣∣∣∣≤ expp{rρ+ε}. (2.3)

Proof. We prove only (ii) . For the proof of (i) see [6]. Let p ≥ 2. By Lemma 2.1, there
exist a subset E2 ⊂ (1,+∞) of finite logarithmic measure, and a constant A depending only
on γ and η , such that for all |z|= r ̸∈ E2 ∪ [0,1], we have∣∣∣∣log

∣∣∣∣ f (z+η)

f (z)

∣∣∣∣∣∣∣∣≤ A
(

T (γr, f )
r

+
n(γr)

r
logγ r log+ n(γr)

)
, (2.4)

where n(t) = n(t,∞, f )+n(t,∞,1/ f ). By using (2.1) and (2.4) , we obtain∣∣∣∣log
∣∣∣∣ f (z+η)

f (z)

∣∣∣∣∣∣∣∣≤ A
(

T (γr, f )
r
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+
12

log µ
T (µγr, f )

r
logγ r log+

(
12

log µ
T (µγr, f )

))

≤ B

(
T (λ r, f )

logλ r
r

logT (λ r, f )

)
, (2.5)

where B > 0 is some constant and λ = µγ > 1. Since f has finite iterated p−order ρp( f ) =
ρ , so given ε, 0 < ε < 2, we have for sufficiently large r

T (r, f )≤ expp−1{rρ+ ε
2 }. (2.6)

Then by using (2.5) and (2.6), we obtain∣∣∣∣log
∣∣∣∣ f (z+η)

f (z)

∣∣∣∣∣∣∣∣≤ B

(
T (λ r, f )

logλ r
r

logT (λ r, f )

)

≤ Bexpp−1{(λ r)ρ+ ε
2 } logλ r

r
logexpp−1{(λ r)ρ+ ε

2 }

= Bexpp−1{(λ r)ρ+ ε
2 } logλ r

r
expp−2{(λ r)ρ+ ε

2 } ≤ expp−1{rρ+ε}. (2.7)

From (2.7) we easily obtain (2.3).

Lemma 2.4 Let η1, η2 be two arbitrary complex numbers such that η1 ̸= η2, and let f
be a meromorphic function of finite iterated p−order ρp( f ) = ρ . Let ε > 0 be given,
then there exists a subset E3 ⊂ (0,+∞) with finite logarithmic measure such that for all
|z|= r ̸∈ E3 ∪ [0,+∞], we have
(i) If p = 1, then

exp{−rρ−1+ε} ≤
∣∣∣∣ f (z+η1)

f (z+η2)

∣∣∣∣≤ exp{rρ−1+ε}.

(ii) If p ≥ 2, then

expp{−rρ+ε} ≤
∣∣∣∣ f (z+η1)

f (z+η2)

∣∣∣∣≤ expp{rρ+ε}.

Proof. We prove only (ii) . For the proof of (i) see [6]. We can write∣∣∣∣ f (z+η1)

f (z+η2)

∣∣∣∣= ∣∣∣∣ f (z+η2 +η1 −η2)

f (z+η2)

∣∣∣∣ , (η1 ̸= η2).

Then by using Lemma 2.3, we obtain for any given ε > 0 and all |z+η2|= R ̸∈ [0,1]∪E2,
such that lm(E2)< ∞

expp{−rρ+ε} ≤ exp
{
−(|z|+ |η2|)ρ+ ε

2

}
≤ expp{−Rρ+ ε

2 }
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≤
∣∣∣∣ f (z+η1)

f (z+η2)

∣∣∣∣= ∣∣∣∣ f (z+η2 +η1 −η2)

f (z+η2)

∣∣∣∣
≤ expp{Rρ+ ε

2 } ≤ expp{(|z|+ |η2|)ρ+ ε
2 } ≤ expp{rρ+ε},

where |z|= r ̸∈ [0,1]∪E3 and E3 is a set of finite logarithmic measure.

Lemma 2.5 [9] Let f be a non-constant meromorphic function, c ∈ C, δ < 1 and ε > 0.
Then

m
(

r,
f (z+ c)

f (z)

)
= o

(
T (r+ |c|, f )1+ε

rδ

)
,

for all r outside of a possible exceptional set E4 with finite logarithmic measure
∫

E4
dr
r < ∞.

Remark 2.1 [7] Let f be a meromorphic function, c be a non-zero complex constant. Then
we have that for r −→+∞

(1+o(1))T (r−|c|, f (z))≤ T (r, f (z+ c))≤ (1+o(1))T (r+ |c|, f (z)).

Consecontly for p ∈ N+ = {1,2, · · ·}, ρp( f (z+h)) = ρp( f ).

Lemma 2.5 and Remark 2.1 lead to the following lemma.

Lemma 2.6 [9] Let f be a non-constant meromorphic function, c, h ∈ C, c ̸= h, δ < 1,
ε > 0. Then

m
(

r,
f (z+ c)
f (z+h)

)
= o

(
(T (r+ |c−h|+ |h|, f ))1+ε

rδ

)
,

holds for all r outside of a possible exceptional set E5 with finite logarithmic measure∫
E5

dr
r < ∞.

Lemma 2.7 [3] Let f be a meromorphic function with iterated p−order 0 < ρp( f ) < ∞
and iterated p−type 0 < τp( f ) < ∞. Then for any given β < τp( f ), there exists a subset
E6 ⊂ [1,+∞) of infinite logarithmic measure such that

logp−1 T (r, f )> β rρp( f ),

holds for all r ∈ E6.

Lemma 2.8 [6] Let µ,R,R′ be real numbers such that 0 < µ < 1,R > 0, and let η be a
non-zero complex number. Then there is a positive constant Cµ depending only on µ such



Some properties of meromorphic olutions of higher order linear difference equations 83

that for a given meromorphic function f we have, when |z| = r, max{1,r+ |η |} < R < R′,
the estimate

m
(

r,
f (z+η)

f (z)

)
+m

(
r,

f (z)
f (z+η)

)
≤ 2|η |R

(R− r−|η |)2

(
m(R, f )+m

(
R,

1
f

))

+
2R′

(R′−R)

(
|η |

R− r−|η |
+

Cµ |η |µ

(1−µ)rµ

)(
N
(
R′, f

)
+N

(
R′,

1
f

))
.

Lemma 2.9 Let η1, η2 be two complex numbers such that η1 ̸= η2 and let f be a finite
iterated p−order meromorphic function. Let ρp( f ) = ρ be the iterated p−order of f . Then
for each ε > 0, we have
(i) If p = 1, then

m
(

r,
f (z+η1)

f (z+η2)

)
= O

(
rρ−1+ε) .

(ii) If p ≥ 2, then

m
(

r,
f (z+η1)

f (z+η2)

)
= O

(
expp−1{rρ+ε}

)
.

Proof. We prove only (ii) . For the proof of (i) see [6]. Let p ≥ 2. We have

m
(

r,
f (z+η1)

f (z+η2)

)
≤ m

(
r,

f (z+η1)

f (z)

)
+m

(
r,

f (z)
f (z+η2)

)

≤ m
(

r,
f (z+η1)

f (z)

)
+m

(
r,

f (z)
f (z+η1)

)
+m

(
r,

f (z)
f (z+η2)

)
+m

(
r,

f (z+η2)

f (z)

)
. (2.8)

Since f has finite iterated p−order ρp( f ) = ρ <+∞, so given ε , 0 < ε < 2, we have

T (r, f )≤ expp−1{rρ+ ε
2 } (2.9)

for all r. By using Lemma 2.8, we obtain from equation (2.8)

m
(

r,
f (z+η1)

f (z+η2)

)
≤ 2|η1|R

(R− r−|η1|)2

(
m(R, f )+m

(
R,

1
f

))

+
2R′

(R′−R)

(
|η1|

R− r−|η1|
+

Cµ |η1|µ

(1−µ)rµ

)(
N
(
R′, f

)
+N

(
R′,

1
f

))
+

2|η2|R
(R− r−|η2|)2

(
m(R, f )+m

(
R,

1
f

))
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+
2R′

(R′−R)

(
|η2|

R− r−|η2|
+

Cµ |η2|µ

(1−µ)rµ

)(
N
(
R′, f

)
+N

(
R′,

1
f

))
=

(
2|η1|R

(R− r−|η1|)2 +
2|η2|R

(R− r−|η2|)2

)(
m(R, f )+m

(
R,

1
f

))
+

2R′

(R′−R)

(
|η1|

R− r−|η1|
+

Cµ |η1|µ

(1−µ)rµ

+
|η2|

R− r−|η2|
+

Cµ |η2|µ

(1−µ)rµ

)(
N
(
R′, f

)
+N

(
R′,

1
f

))
. (2.10)

By choosing µ = 1− ε
2
, R = 2r, R′ = 3r and r > max{|η1|, |η2|,1/2} in (2.10) , we get

m
(

r,
f (z+η1)

f (z+η2)

)
≤
(

4|η1|r
(r−|η1|)2 +

4|η2|r
(r−|η2|)2

)(
m(2r, f )+m

(
2r,

1
f

))

+6

(
|η1|

r−|η1|
+

2Cµ |η1|1−
ε
2

εr1− ε
2

+
|η2|

r−|η2|
+

2Cµ |η2|1−
ε
2

εr1− ε
2

)(
N (3r, f )+N

(
3r,

1
f

))

≤ 4
[

4|η1|r
(r−|η1|)2 +

4|η2|r
(r−|η2|)2

+ 6

 |η1|
r−|η1|

+
|η2|

r−|η2|
+

2Cµ

(
|η1|1−

ε
2 + |η2|1−

ε
2

)
εr1− ε

2

T (3r, f ) .

From this, by using the estimate (2.9), we have

m
(

r,
f (z+η1)

f (z+η2)

)
≤ 4K

[
4|η1|r

(r−|η1|)2 +
4|η2|r

(r−|η2|)2

+ 6

 |η1|
r−|η1|

+
|η2|

r−|η2|
+

2Cµ

(
|η1|1−

ε
2 + |η2|1−

ε
2

)
εr1− ε

2

expp−1{(3r)ρ+ ε
2 }

≤ M expp−1{rρ+ε},

where K > 0, M > 0 are some constants. This completes the proof.

Lemma 2.10 Under the assumptions of Theorem 1.1 or Theorem 1.2, we have ρp(Al) = ρ.

Proof. By Theorem 1.1, we have ρp(Al)≤ ρ. Suppose that ρp(Al) = µ < ρ. Then, for any
given ε > 0 and sufficiently large r, we have

|Al (z)| ≤ expp{rµ+ε}. (2.11)
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On the other hand, by the hypotheses of Theorems 1.1, there exist positive constants 0 ≤
β < α and δ (0 < δ < ρ) sufficiently small, such that

|Al (z)| ≥ expp{αrρ−δ} (2.12)

as z → ∞ for z ∈ H. From (2.11) and (2.12) , we obtain for z ∈ H, |z|= r →+∞

expp{αrρ−δ} ≤ |Al (z)| ≤ expp{rµ+ε}

and by ε is arbitrary with 0 < ε < ρ − µ − 2δ , this is a contradiction as r → +∞. Hence,
ρp(Al) = ρ .

By Theorem 1.2, we have ρp(Al) ≤ ρ. Suppose that ρp(Al) = µ < ρ. Then, for any given
ε > 0 and sufficiently large r, we have

T (r,Al)≤ expp−1{rµ+ε}. (2.13)

On the other hand, by the hypotheses of Theorems 1.2, there exist positive constants 0 ≤
β < α and δ (0 < δ < ρ) sufficiently small, such that

T (r,Al)≥ expp−1{αrρ−δ} (2.14)

as z → ∞ for z ∈ H. From (2.13) and (2.14) , we obtain for z ∈ H, |z|= r →+∞

expp−1{αrρ−δ} ≤ T (r,Al)≤ expp−1{rµ+ε}

and by ε is arbitrary with 0 < ε < ρ − µ − 2δ , this is a contradiction as r → +∞. Hence,
ρp(Al) = ρ .

3 Proofs of main results

Proof of Theorem 1.1. First case: When p = 1, let f (̸≡ 0) be a meromorphic solution of
equation (1.2). Suppose that ρ( f ) < ρ + 1. Then by Lemma 2.4 (i), for any given ε (0 <
ε < ρ + 1− ρ( f )− 2δ ), there exists a set E3 ⊂ (0,+∞) with finite logarithmic measure
such that for all |z|= r /∈ E3 ∪ [0,1], we have∣∣∣∣ f (z+ c j)

f (z+ cl)

∣∣∣∣≤ exp{rρ( f )−1+ε}< exp{rρ−2δ}, ( j = 1, · · · ,k, j ̸= l) (3.1)

and ∣∣∣∣ f (z)
f (z+ cl)

∣∣∣∣≤ exp{rρ( f )−1+ε}< exp{rρ−2δ}. (3.2)
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We divide through equation (1.2) by f (z+ cl) to get

−Al(z) = Ak(z)
f (z+ ck)

f (z+ cl)
+ · · ·+Al−1 (z)

f (z+ cl−1)

f (z+ cl)

+ · · ·+A1(z)
f (z+ c1)

f (z+ cl)
+A0(z)

f (z)
f (z+ cl)

. (3.3)

Rewrite equation (3.3) in the form

−1 =
k

∑
j=1, j ̸=l

A j(z) f (z+ c j)

Al(z) f (z+ cl)
+

A0(z) f (z)
Al(z) f (z+ cl)

,

it follows that

1 ≤
k

∑
j=1, j ̸=l

∣∣∣∣A j(z)
Al(z)

·
f (z+ c j)

f (z+ cl)

∣∣∣∣+ ∣∣∣∣A0(z)
Al(z)

· f (z)
f (z+ cl)

∣∣∣∣ . (3.4)

From the conditions of Theorem 1.1, there is a set H of complex numbers satisfying
logdens{|z| : z ∈ H} > 0 such that for z ∈ H, we have (1.3) and (1.4) as |z| → +∞. Set
H1 = {r = |z| : z ∈ H} , since logdens{|z| : z ∈ H}> 0, then H1 is a set of r with

∫
H1

dr
r = ∞.

Substituting (1.3) , (1.4) (when p = 1), (3.1) and (3.2) into (3.4), we get for z ∈ H1 r
(E3 ∪ [0,1])

1 ≤ k
exp{β rρ−δ}
exp{αrρ−δ}

exp{rρ−2δ}= exp{(β −α)rρ−δ + rρ−2δ}→ 0, r →+∞

which is a contradiction. Hence, we get ρ( f ) ≥ ρ + 1. By Lemma 2.10, we know that
ρ(Al) = ρ . So, ρ( f )≥ ρ(Al)+1.
Second case: For p ≥ 2, let f (̸≡ 0) be a meromorphic solution of equation (1.2). Suppose
that ρp( f ) < ρ. Then by Lemma 2.4 (ii), for any given ε (0 < ε < ρ −ρp( f )−2δ ), there
exists a set E3 ⊂ (0,+∞) with finite logarithmic measure such that for all |z|= r /∈E3∪ [0,1],
we have ∣∣∣∣ f (z+ c j)

f (z+ cl)

∣∣∣∣≤ expp{rρp( f )+ε}< expp{rρ−2δ}, ( j = 1, · · · ,k, j ̸= l) (3.5)

and ∣∣∣∣ f (z)
f (z+ cl)

∣∣∣∣≤ expp{rρp( f )+ε}< expp{rρ−2δ}. (3.6)

Substituting (1.3) , (1.4) , (3.5) and (3.6) into (3.4), we get for z ∈ H1 r (E3 ∪ [0,1])

1 ≤ k
expp{β rρ−δ}
expp{αrρ−δ}

expp{rρ−2δ}→ 0, r →+∞
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which is a contradiction. Hence, we get ρp( f )≥ ρ . By Lemma 2.10, we know that ρp(Al)=
ρ . So, ρp( f )≥ ρp(Al).

Proof of Theorem 1.2
First case: When p = 1, let f (̸≡ 0) be a meromorphic solution of equation (1.2). Suppose
that

ρ( f )< ρ +1.

Since A0(z), · · · ,Ak(z) are entire functions, then by (3.3) , we have

m(r,Al(z)) = T (r,Al(z))≤
k

∑
j=0, j ̸=l

m(r,A j(z))

+
k

∑
j=1, j ̸=l

m
(

r,
f (z+ c j)

f (z+ cl)

)
+m

(
r,

f (z)
f (z+ cl)

)
+O(1)

=
k

∑
j=0, j ̸=l

T (r,A j(z))+
k

∑
j=1, j ̸=l

m
(

r,
f (z+ c j)

f (z+ cl)

)
+m

(
r,

f (z)
f (z+ cl)

)
+O(1). (3.7)

By Lemma 2.9 (i) and (3.7), we obtain for any given ε (0 < ε < ρ +1−ρ( f )−2δ )

T (r,Al(z))≤
k

∑
j=0, j ̸=l

T (r,A j(z))+
k

∑
j=1, j ̸=l

m
(

r,
f (z+ c j)

f (z+ cl)

)

+m
(

r,
f (z)

f (z+ cl)

)
+O(1)≤

k

∑
j=0, j ̸=l

T (r,A j(z))+O(rρ( f )−1+ε). (3.8)

Substituting (1.5) and (1.6) (when p = 1) into (3.8), we get for |z|= r →+∞, z ∈ H

(α − kβ ) rρ−δ ≤ O(rρ( f )−1+ε).

By α − kβ > 0, it follows that

1 ≤ O(1)rρ( f )−1+ε−ρ+δ → 0, r →+∞

which is a contradiction. Hence we get ρ( f ) ≥ ρ + 1. By Lemma 2.10, we know that
ρ(Al) = ρ . So, ρ( f )≥ ρ(Al)+1.

Second case: For p ≥ 2, let f (̸≡ 0) be a meromorphic solution of equation (1.2). Suppose
that ρp( f ) < ρ. By Lemma 2.9 (ii) and (3.7), we obtain for any given ε (0 < ε < ρ −
ρp( f )−2δ )

T (r,Al(z))≤
k

∑
j=0, j ̸=l

T (r,A j(z))
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+
k

∑
j=1, j ̸=l

expp−1{rρp( f )+ε}+ expp−1{rρp( f )+ε}+O(1). (3.9)

Substituting (1.5) and (1.6) (when p = 2) into (3.9), we get for |z|= r →+∞, z ∈ H

expp−1{αrρ−δ} ≤
k

∑
j=0, j ̸=l

expp−1{β rρ−δ}+
k

∑
j=1, j ̸=l

expp−1{rρp( f )+ε}

+expp−1{rρp( f )+ε}+O(1)≤ k expp−1{β rρ−δ}+ k expp−1{rρp( f )+ε}+O(1). (3.10)

By (3.10) , we obtain
(α −β )rρ−δ ≤ rρp( f )+ε +O(1).

By α −β > 0, it follows that

1 ≤ 1
α −β

rρp( f )+ε−ρ+δ +
1

(α −β )rρ−δ O(1)→ 0, r →+∞

which is a contradiction. By Lemma 2.10, we know that ρp(Al) = ρ . Hence, we get
ρp( f )≥ ρp(Al). Thus, Theorem 1.2 is proved.

Proof of Theorem 1.3. Let f (̸≡ 0) be a meromorphic solution of (1.2). By equation (3.7)
and Lemma 2.6, we obtain

T (r,Al(z)) = m(r,Al(z))≤
k

∑
j=0, j ̸=l

m(r,A j(z))+
k

∑
j=1, j ̸=l

m
(

r,
f (z+ c j)

f (z+ cl)

)

+m
(

r,
f (z)

f (z+ cl)

)
+O(1)≤

k

∑
j=0, j ̸=l

T (r,A j(z))

+
k

∑
j=1, j ̸=l

o

(
(T (r+ |c j − cl|+ |cl|, f ))1+ε

rδ

)

+o

(
(T (r+2|cl|, f ))1+ε

rδ

)
+O(1)≤

k

∑
j=0, j ̸=l

T (r,A j(z))+o

(
(T (r+2|cl|, f ))1+ε

rδ

)
(3.11)

for all r outside of a possible exceptional set E5 with finite logarithmic measure
∫

E5
dr
r < ∞.

Let β1, β2 be two real numbers such that

max{τp+1(A j) : ρp+1(A j) = ρp+1(Al)}< β1 < β2 < τp+1(Al).
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Then by Lemma 2.7, we know that there exists a set E6 of infinite logarithmic measure,
such that

T (r,Al)> expp{β2rρp+1(Al)}

holds for all r ∈ E6. Therefore we can take a sequence {rn} such that rn ∈ E6, rn → ∞, and

T (rn,Al)> expp{β2rρp+1(Al)
n }. (3.12)

On the other hand, if b = max{ρp+1(A j) : j = 0, · · · ,k, j ̸= l} < ρp+1(Al), then for any
given ε (0 < ε < ρp+1(Al)−b) and sufficiently large rn, we have

T (rn,A j)≤ expp{rb+ε
n } ≤ expp{β1rρp+1(Al)

n }. (3.13)

If max{τp+1(A j) : ρp+1(A j) = ρp+1(Al)}< τp+1(Al), then for sufficiently large rn, we have

T (rn,A j)≤ expp{β1rρp+1(Al)
n }. (3.14)

Then substituting (3.12) , (3.13) or (3.14) into (3.11), we get for rn ∈ E6�E5

expp{β2rρp+1(Al)
n }< T (rn,Al)≤ k expp{β1rρp+1(Al)

n }+o

(
(T (rn +2|cl|, f ))1+ε

rδ
n

)
. (3.15)

Then by (3.15), we get

(1−o(1))expp{β2rρp+1(Al)
n }< o

(
(T (rn +2|cl|, f ))1+ε

rδ
n

)
.

Hence,
ρp( f ) = ∞ and ρp+1( f )≥ ρp+1(Al).

Proof of Theorem 1.4. (i) First we consider the case

ρp+1(F)< ρp+1(Al) or ρp+1(F) = ρp+1(Al), τp+1(F)< τp+1(Al).

Let f be a meromorphic solution of (1.7). We divide equation (1.7) by f (z+ cl) to get

−Al(z) =
k

∑
j=1, j ̸=l

A j(z)
f (z+ c j)

f (z+ cl)
+A0(z)

f (z)
f (z+ cl)

− F(z)
f (z+ cl)

. (3.16)

It follows from (3.16), Remark 2.1 and Lemma 2.6 that for any given ε > 0 and sufficiently
large r, we have

T (r,Al(z)) = m(r,Al(z))≤ m
(

r,
F(z)

f (z+ cl)

)
+

k

∑
j=0, j ̸=l

m(r,A j(z))
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+
k

∑
j=1, j ̸=l

m
(

r,
f (z+ c j)

f (z+ cl)

)
+m

(
r,

f (z)
f (z+ cl)

)
+O(1)≤ T (r,F(z))

+T (r, f (z+ cl))+
k

∑
j=0, j ̸=l

m(r,A j(z))+o

(
(T (r+2|cl|, f ))1+ε

rδ

)

≤ T (r,F(z))+(1+o(1))T (r+ |cl|, f (z))+
k

∑
j=0, j ̸=l

T (r,A j(z))

+o

(
(T (r+2|cl|, f ))1+ε

rδ

)
≤ T (r,F(z))

+
k

∑
j=0, j ̸=l

T (r,A j(z))+2T (r+ |cl|, f (z))+o

(
(T (r+2|cl|, f ))1+ε

rδ

)
(3.17)

for r → ∞, r /∈ E5, where E5 is a set of finite logarithmic measure. Let β1,β2 be two real
numbers such that

max{τp+1(A j),τp+1(F) : ρp+1(A j) = ρp+1(Al)}< β1 < β2 < τp+1(Al).

Then by Lemma 2.7, we can take a sequence {rn} such that rn ∈ E6,rn → ∞, and equations
(3.12)–(3.14) also hold for sufficiently large rn. On the other hand, for sufficiently large rn

we have
T (rn,F)≤ expp{β1rρp+1(Al)

n }. (3.18)

Substituting equations (3.12), (3.13) (or (3.14)) and (3.18) into (3.17), we get for rn ∈
E6�E5

expp{β2rρp+1(Al)
n }< T (rn,Al)≤ (k+1)expp{β1rρp+1(Al)

n }+3(T (2rn, f ))2 . (3.19)

Hence, by equation (3.19), we get

ρp( f ) = ∞ and ρp+1( f )≥ ρp+1(Al).

(ii) Next we consider the case ρp+1(F) > ρp+1(Al). Let f be a meromorphic solution of
(1.7). By Remark 2.1 and Lemma 2.6 that for any given ε > 0 and sufficiently large r, we
have

T (r,F (z))≤
k

∑
j=0

T (r,A j(z))+
k

∑
j=1

T (r, f (z+ c j))+T (r, f (z))+O(1)

≤
k

∑
j=0

T (r,A j(z))+(1+o(1))kT (r, f (z+ |cs|))+T (r, f (z))+O(1)
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≤
k

∑
j=0

T (r,A j(z))+(2k+1)T (2r, f (z))+O(1), |cs|= max
1≤ j≤k

{∣∣c j
∣∣} . (3.20)

By the definition of iterated p+ 1−order, we know that there exists a sequence {rn} such
that rn →+∞, and for any given ε (0 < 2ε < ρp+1(F)−ρp+1(Al)), we have

T (rn,F)≥ expp{rρp+1(F)−ε
n } (3.21)

and
T (rn,A j)≤ expp{rb+ε

n } ≤ expp{rρp+1(Al)+ε
n } ( j = 0, · · · ,k), (3.22)

where b = max{ρp+1(A j) : j = 0, · · · ,k, j ̸= l}< ρp+1(Al). Substituting (3.21) and (3.22)
into (3.20), we get

expp{rρp+1(F)−ε
n } ≤ (k+1)expp{rρp+1(Al)+ε

n }+(2k+1)T (2r, f (z)).

Hence,
ρp( f ) = ∞ and ρp+1( f )≥ ρp+1(F).

4 Examples

Next we give an example that illustrates Theorem 1.1.

Exemple 4.1. We consider the meromorphic function

f (z) = e−z2
tanz.

Then f satisfies the difference equation

A2(z) f (z+2π)+A1(z) f (z+π)+A0(z) f (z) = 0, (4.1)

where

A2(z) = 2exp{2πz+3π2}, A1(z) =−1, A0(z) =−exp{−2πz−π2}.

We have
ρ(A2) = ρ(A0) = 1, ρ(A1) = 0

and
1 = max

0≤ j≤1
{ρ(A j)} ≤ ρ = 1.

We choose
H = {z ∈ C : z = reiθ , r ∈ [1,+∞[,

π
4
≤ θ ≤ π

3
}
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a complex set satisfying logdens{r = |z| : z ∈ H}> 0, we get for δ (0 < δ < ρ = 1) suffi-
ciently small

|A2(z)|= |2exp{2πz+3π2}|= 2exp{2πr cosθ +3π2}

≥ 2exp{πr+4π2} ≥ exp{πr1−δ},

|A1(z)|= 1 ≤ exp{r1−δ}

and
|A0(z)|= |− exp{−2πz−π2}|= exp{−2πr cosθ −π2}

≤ exp{−πr−π2} ≤ exp{r1−δ}

as z → ∞ for z ∈ H. As we see, conditions of Theorem 1.1 are verified with α = π and
β = 1. We get

2 = ρ( f )≥ ρ(A2)+1 = 2.

Next we give an example that illustrates Theorem 1.3.

Exemple 4.2. Consider the difference equation

(z+2iπ)exp{−sin(z+2iπ)} f (z+2iπ)

−2
(

z+ i
π
2

)
exp
{

2isinh2z− sin
(

z+ i
π
2

)}
f
(

z+ i
π
2

)
+zexp{−sinz} f (z) = 0. (4.2)

In this equation we have

A2(z) = (z+2iπ)exp{−sin(z+2iπ)} ,

A1(z) =−2
(

z+ i
π
2

)
exp
{

2isinh2z− sin
(

z+ i
π
2

)}
,

A0(z) = zexp{−sinz} .

We obtain
ρ(A2) = ρ(A1) = ρ(A0) = ∞,

ρ2(A2) = ρ2(A1) = ρ2(A0) = 1,

τ2(A2) = 1, τ2(A1) = 2, τ2(A0) = 1.

As we see, conditions of Theorem 1.3 are verified

1 = max{ρ2(A j) : j = 0,2} ≤ ρ2(A1) = 1,

1 = max{τ2(A j) : ρ2(A j) = ρ2(A1)}< τ2(A1) = 2.
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The meromorphic function

f (z) =
exp{sin2iz+ sinz}

z

is solution of equation (4.2) and f satisfies

ρ( f ) = ∞ and 1 = ρ2( f )≥ ρ2(A1) = 1.

Next, we give an example that illustrates Theorem 1.4.

Exemple 4.3. Case (i). Consider the difference equation

(z+2iπ)exp{−sin(z+2iπ)} f (z+2iπ)

−(z+ iπ)exp{−sin(z+ iπ)} f (z+ iπ)

+zexp{−sin2iz} f (z) = exp{sinz} . (4.3)

In this equation, we have

A2(z) = (z+2iπ)exp{−sin(z+2iπ)} ,

A1(z) =−(z+ iπ)exp{−sin(z+ iπ)} ,

A0(z) = zexp{−sin2iz} , F(z) = exp{sinz} .

We obtain
ρ(A2) = ρ(A1) = ρ(A0) = ρ(F) = ∞,

ρ2(A2) = ρ2(A1) = ρ2(A0) = ρ2(F) = 1,

τ2(A2) = 1, τ2(A1) = 1, τ2(A0) = 2, τ2(F) = 1.

It clear that the conditions of Theorem 1.4 (i) are satisfied

1 = max{ρ2(A j) : j = 1,2} ≤ ρ2(A0) = 1,

1 = max{τ2(A j) : ρ2(A j) = ρ2(A0)}< τ2(A0) = 2,

ρ2(F) = ρ2(A0) = 1 and τ2(F) = 1 < τ2(A0) = 2. The meromorphic function

f (z) =
exp{sin2iz+ sinz}

z

is solution of equation (4.3) and f satisfies

ρ( f ) = ∞ and 1 = ρ2( f )≥ ρ2(A0) = 1.
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Case (ii). We consider the meromorphic function

f (z) =
exp{sinz}

z
.

Then f satisfies the difference equation

A2(z) f (z+2π)+A1(z) f (z+π)+A0(z) f (z) = F(z), (4.4)

where

A2(z) = (z+2π)exp
{

sin
√

z√
z

}
, A1(z) = (z+π)exp

{
sin3

√
z√

z

}
A0(z) =−zexp

{
sin

√
z√

z

}
, F(z) = exp

{
−sinz+

sin3
√

z√
z

}
.

We have
ρ(A2) = ρ(A1) = ρ(A0) = ρ(F) = ∞,

ρ2(F) = 1, ρ2(A2) = ρ2(A1) = ρ2(A0) = 1/2,

τ2(A2) = τ2(A0) = 1, τ2(A1) = 3.

It clear that the conditions of Theorem 1.4 (ii) are satisfied

1/2 = max{ρ2(A j) : j = 0,2} ≤ ρ2(A1) = 1/2,

1 = max{τ2(A j) : ρ2(A j) = ρ2(A1)}< 3

and 1 = ρ2(F)> ρ2(A1) = 1/2. We see that

ρ( f ) = ∞ and 1 = ρ2( f )≥ ρ2(F) = 1.
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