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Coupled fixed point theorems on complex partial metric space
using different type of contractive conditions

M. Gunaseelan, L. N. Mishra

Abstract: In this paper, we obtain coupled fixed point theorems on complex partial metric space
using different type of contractive conditions. An example to support our result is presented.
Keywords: Coupled fixed point; complex partial metric space.

1 Introduction

In many branches of science, economics, computer science, engineering and the develop-
ment of nonlinear analysis, the fixed point theory is one of the most important tool. In 1989,
Backhtin [2] introduced the concept of b-metric space. In 1993, Czerwik [3] extended the
results of b-metric spaces. Azam et al.[4] introduced new spaces called complex valued
metric spaces and established the existence of fixed point theorems under the contraction
condition. P. Dhivya and M. Marudai [5] introduced new spaces called complex partial
metric space and established the existence of common fixed point theorems under the con-
traction condition of rational expression. Bhaskar and Lakshmikantham [7] introduced the
concept of coupled fixed point. Ćirić and Lakshmikantham [8] investigated some more
coupled fixed point theorems in partially ordered sets. Hassen Aydi [1] introduced coupled
fixed point results on partial metric spaces. In this paper, we introduced coupled fixed point
results on complex partial metric spaces under the contractive condition.

2 Preliminaries

Let C be the set of complex numbers and c1,c2 ∈ C. Define a partial order ≼ on C as
follows:
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c1 ≼ c2 if and only if Re(c1)≤ Re(c2) and Im(c1)≤ Im(c2).
Consequently,one can infer that c1 ≼ c2 if one of the following conditions is satisfied:
(i) Re(c1) = Re(c2),Im(c1)< Im(c2),
(ii)Re(c1)< Re(c2),Im(c1) = Im(c2),
(iii)Re(c1)< Re(c2),Im(c1)< Im(c2),
(iv)Re(c1) = Re(c2),Im(c1) = Im(c2).
In particular,we write c1 � c2 if c1 ̸= c2 and one of (i),(ii) and (iii) is satisfied and we write
c1 ≺ c2 if only (iii) is satisfied.Notice that
(a) If 0 ≼ c1 � c2,then |c1|< |c2|,
(b) If c1 ≼ c2 and c2 ≺ c3 then c1 ≺ c3,
(c) If a,b ∈ R and a ≤ b then ac ≼ bc for all c ∈ C.

Definition 2.1. [5] A complex partial metric on a non-empty set U is a function ξc : U ×
U → C+ such that for all p,r,s ∈ Y :
(i) 0 ≼ ξc(p, p)≼ ξc(p,r)(smallsel f −distances)
(ii) ξc(p,r) = ξc(r, p)(symmetry)
(iii) ξc(p, p) = ξc(p,r) = ξc(r,r) if and only if p = r(equality)
(iv) ξc(p,r)≼ ξc(p,s)+ξc(s,r)−ξc(s,s)(triangularity).
A complex partial metric space is a pair (U,ξc) such that U is a non empty set and ξc is
complex partial metric on U.

For the complex partial metric ξc on U , the function dξc : U ×U → C+ given by ξ t
c =

2ξc(p,r)−ξc(p, p)−ξc(r,r) is a (usual) metric on U . Each complex partial metric ξc on U
generates a topology τξc on U with the base family of open ξc-balls {Bξc(p,ε) : p ∈U,ε >
0}, where Bξc(p,ε) = {r ∈U : ξc(p,r)< ξc(p, p)+ ε} for all p ∈U and 0 < ε ∈ C+.

Definition 2.2. [5] Let (U,ξc) be a complex partial metric space(CPMS). A sequence (pn)
in a CPMS (U,ξc) is converges to p ∈U, if for every 0 ≺ ε ∈ C+ there is N ∈ N such that
for all n ∈ N we get pn ∈ Bξc(p,ε)

Definition 2.3. [5] Let (U,ξc) be a complex partial metric space. A sequence (pn) in a
CPMS (U,ξc) is called Cauchy if there is a ∈ C+ such that for every ε ≺ 0 there is N ∈ N
such that for all n,m ≥ N |ξc(pn, pm)−a|< ε .

Definition 2.4. [5] Let (U,ξc) be a complex partial metric space(CPMS).
(1) A CPMS (U,ξc) is said to be complete if a Cauchy sequence (pn) in U converges, with
respect to τξc , to a point p ∈U such that ξc(p, p) = lim

n,m→∞
ξc(pn, pm).

(2) A mapping H : U →U is said to be continuous at p0 ∈U if for every ε ≺ 0, there exist
δ > 0 such that H(Bξc(p0,δ ))⊂ Bξc(H(p0,ε)).

Lemma 2.1. [5] Let (U,ξc) be a complex partial metric space. A sequence {yn} is Cauchy
sequence in the CPMS (U,ξc) then {yn} is Cauchy in a metric space (U,ξ t

c).
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Definition 2.5. Let (U,ξc) be a complex partial metric space(CPMS).Then an element
(p,r) ∈ U ×U is said to be a coupled fixed point of the mapping F : U ×U → U if
F(p,r) = p and F(r, p) = r.

Theorem 2.2. Let (U,ξc) be a complete complex partial metric space. Suppose that the
mapping ϕ : U ×U →U satisfies the following contractive condition for all α,β ,γ,δ ∈U

ξc(ϕ(α,β ),ϕ(γ,δ ))≼ kξc(ϕ(α,β ),α)+ lξc(ϕ(γ,δ ),γ),

where k, l are nonnegative constants with k+ l < 1. Then, ϕ has a unique coupled fixed
point.

Proof. Choose u0,v0 ∈U and set u1 = ϕ(u0,v0) and v1 = ϕ(v0,u0).Continuing this process,
set un+1 = ϕ(un,vn) and vn+1 = ϕ(vn,un).
Then,

ξc(un,un+1) = ξc(ϕ(un−1,vn−1),ϕ(un,vn))

≼ kξc(ϕ(un−1,vn−1),un−1)+ lξc(ϕ(un,vn),un)

= kξc(un,un−1)+ lξc(un+1,un)

ξc(un,un+1)≼
k

1− l
ξc(un,un−1)

which implies that

|ξc(un,un+1)| ≤ p|ξc(un−1,un)| (1)

where p = k
1−l < 1. Similarly, one can prove that

|ξc(vn,vn+1)| ≤ p|ξ (vn−1,vn)| (2)

From (1) and (2), we get

|ξc(un,un+1)|+ |ξc(vn,vn+1)| ≤ p(|ξc(un−1,un)|+ |ξc(vn−1,vn))

where p < 1.
Also,

|ξc(un+1,vn+2)| ≤ p|ξc(un,un+1)| (3)

|ξc(vn+1,vn+2)| ≤ p|ξc(vn,vn+1)| (4)

From (3) and (4), we get

|ξc(un+1,vn+2)|+ |ξc(vn+1,vn+2)| ≤ p(|ξc(un,un+1)|+ |ξc(vn,vn+1)|)
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Repeating this way, we get

|ξc(un,vn+1)|+ |ξc(vn,vn+1)| ≤ p(|ξc(vn−1,vn)|+ |ξc(un−1,un)|)
≤ p2(|ξc(vn−2,vn−1)|+ |ξc(un−2,un−1)|)
≤ ·· · ≤ pn(|ξc(v0,v1)|+ |ξc(u0,u1)|)

Now, if |ξc(un,vn+1)|+ |ξc(vn,vn+1)|= tn, then

tn ≤ ptn−1 ≤ ·· · ≤ pnt0 (5)

If t0 = 0 then |ξc(u0,u1)|+ |ξc(v0,v1)| = 0. Hence u0 = u1 = ϕ(u0,v0) and v0 = v1 =
ϕ(v0,v0), which implies that (u0,v0) is a coupled fixed point of ϕ .
Let t0 > 0. For each n ≥ m,we have

ξc(un,um)≼ ξc(un,un−1)+ξc(un−1,un−2)−ξc(un−1,un−1)

+ξc(un−2,un−3)+ξc(un−3,un−4)−ξc(un−3,un−3)

+ · · ·+ξc(um+2,um+1)+ξc(um+1,um)−ξc(um+1,um+1)

≼ ξc(un,un−1)+ξc(un−1,un−2)+ · · ·+ξc(um+1,um)

which implies that

|ξc(un,um)| ≤ |ξc(un,un−1)|+ |ξc(un−1,un−2)|+ · · ·+ |ξc(um+1,um)|.

Similarly,one can prove that

|ξc(vn,vm)| ≤ |ξc(vn,vn−1)|+ |ξc(vn−1,vn−2)|+ · · ·+ |ξc(vm+1,vm)|.

Thus,

|ξc(un,um)|+ |ξc(vn,vm)| ≤ tn−1 + tn−2 + tn−3 + · · ·+ tm
≤ (pn−1 + pn−2 + · · ·+ pm)t0

≤ pm

1− p
t0 → 0 n → ∞.

which implies that {un} and {vn} are Cauchy sequence in (U,ξc). Since the partial metric
space (U,ξc) is complete, there exists u,v ∈ U such that {un} → u and vn → v as n →
∞ and ξc(u,u) = limn→∞ ξc(u,un) = limn,m→∞ ξc(un,um) = 0,ξc(u,u) = limn→∞ ξc(v,vn) =
limn,m→∞ ξc(vn,vm) = 0. We now show that u = ϕ(p,q). We suppose on the contrary that
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u ̸= ϕ(u,v) and v ̸= ϕ(v,u) so that 0 ≺ ξc(u,ϕ(u,v)) = l1 and 0 ≺ ξc(v,ϕ(v,u)) = l2
then

l1 = ξc(u,ϕ(u,v))≼ ξc(u,un+1)+ξc(un+1,ϕ(u,v))
= ξc(u,un+1)+ξc(ϕ(un,vn),ϕ(u,v))
≼ ξc(u,un+1)+ kξc(un−1,un)+ lξc(ϕ(u,v),u)

≼ 1
1− l

ξc(u,un+1)+
k

1− l
ξ (un−1,un)

which implies that

|l1| ≤
1

1− l
|ξc(u,un+1)|+

k
1− l

|ξ (un−1,un)|

As n → ∞, |l1| ≤ 0. Which is a contradiction, therefore |ξc(u,ϕ(u,v))| = 0 implies u =
ϕ(u,v). Similarly we can prove that v = ϕ(v,u). Thus (u,v) is a coupled fixed point of ϕ .
Now, if (g,h) is another coupled fixed point of ϕ ,then

ξc(u,g) = ξc(ϕ(u,v),ϕ(g,h))≼ kξc(ϕ(u,v),u)+ lξc(ϕ(g,h),g)
= kξc(u,u)+ lξc(g,g) = 0

Thus,we have g = u. Similarly, we get h = v. Therefore ϕ has a unique coupled fixed point
.

Corollary 2.3. Let (U,ξc) be a complete complex partial metric space. Suppose that the
mapping ϕ : U ×U →U satisfies the following contractive condition for all α,β ,γ,δ ∈U

ξc(ϕ(α,β ),ϕ(γ,δ ))≼ k
2
(ξc(ϕ(α,β ),α)+ξc(ϕ(γ,δ ),γ)), (6)

where 0 ≤ k < 1 . Then, ϕ has a unique coupled fixed point.

Example 2.4. Let U = [0,∞) endowed with the usual complex partial metric ξc : U ×U →
[0,∞) defined by ξc(p,q) = max{p,q}(1+ i).The complex partial metric space (U,ξc) is
complete because (U,ξ t

c) is complete. Indeed,for any p,q ∈U,

ξ t
c = 2ξc(p,r)−ξc(p, p)−ξc(r,r)

= 2max{p,q}(1+ i)− (p+ ip)− (q+ iq)

= |p−q|+ i|p−q|.



122 M. Gunaseelan, L. N. Mishra

Thus, (U,ξc) is the Euclidean complex metric space which is complete. Consider the map-
ping ϕ : U ×U →U defined by ϕ(p,q) = p+q

12 . For any p,q,g,h ∈U, we have

ξc(ϕ(p,q),ϕ(g,h)) =
1
12

max{p+g,ϕ(p,q)+ϕ(g,h)}(1+ i)

≤ 1
12

[max{ϕ(p,q), p}+max{ϕ(g,h),g}](1+ i)

=
1
12

[ξc(ϕ(p,q), p)+ξc(ϕ(g,h),g)].

which is the contractive condition (6) for k = 1
6 . Therefore, by Corollary 2.3, and hence ψ

has a unique coupled fixed point, which is (0,0). Note that if the mapping ϕ : U ×U →U
is given by ϕ(p,q) = p+q

2 , then ϕ satisfies the contractive condition (6) for k = 1, that is,

ξc(ϕ(p,q),ϕ(g,h)) =
1
2

max{p+g,ϕ(p,q)+ϕ(g,h)}(1+ i)

≤ [max{ϕ(p,q), p}+max{ϕ(g,h),g}](1+ i)

=
1
2
[ξc(ϕ(p,q), p)+ξc(ϕ(g,h),g)].

In this case, (0,0) and (1,1) are both coupled fixed points of ϕ , and, hence, the coupled
fixed point of ϕ is not unique. This shows that the condition k < 1 in Corollary 2.3, and
hence k+ l < 1 in Theorem 2.2 cannot be omitted in the statement of the aforesaid results.
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