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A Survey on Randić (Normalized) Incidence Energy of Graphs

Ş. Burcu Bozkurt Altındağ

Abstract: For a graph G of order n with normalized signless Laplacian eigenvalues γ+1 ≥ γ+2 ≥
·· · ≥ γ+n ≥ 0, the Randić (normalized) incidence energy is defined as IRE(G) = ∑n

i=1

√
γ+i .

In this paper, we present a survey on the results of IRE (G), especially with emphasis on the
properties, bounds and Coulson integral formula of IRE (G).

1 Introduction

All graphs considered in this paper are simple finite undirected graphs. The terminology
and notation not defined here can be found in [11].

Let G = (V,E) be a graph with n vertices and m edges. The vertex set and edge set
of G are, respectively, denoted by V = {v1,v2, . . . ,vn} and E = {e1,e2, . . . ,em}. Let di be
the degree of the vertex vi ∈V , i = 1,2, . . . ,n. Denote by δ and ∆ the minimum degree and
the maximum degree of G, respectively. If vi and v j are two adjacent vertices of G, then
it is written as i ∼ j. Let A(G) = (ai j) be the (0,1)-adjacency matrix of the graph G. It is
defined by ai j = 1 if i ∼ j and 0 otherwise. The eigenvalues λ1 ≥ λ2 ≥ ·· · ≥ λn of A(G)
are the (ordinary) eigenvalues of G [11].

For a graph G, the (ordinary) graph energy was introduced as the sum of absolute values
of its eigenvalues [15]. It is defined as

E(G) =
n

∑
i=1

|λi|. (1.1)

For details on the theory of E(G), see [21] and the references cited therein.
As the generalization of the graph energy concept, the energy of a real matrix (not

necessarily square) M, denoted by E (M), is defined by Nikiforov [29] as the sum of its
singular values that are equal to the square roots of the eigenvalues of MMT , where MT is
the transpose of M. Especially, for a graph G, E(G) = E(A(G)).

Denote by L(G) = D(G)−A(G) and Q(G) = D(G)+A(G) the Laplacian matrix and
the signless Laplacian matrix of G, respectively [26]. Here, D(G) = diag(d1,d2, . . . ,dn)
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is the diagonal degree matrix of G. For a graph G without isolated vertices, the matrix
D(G)−1/2 is well defined. Then, the normalized Laplacian matrix is defined as

L (G) = D(G)−1/2 L(G)D(G)−1/2 = In −R(G)

and the normalized signless Laplacian matrix as [9]

L + (G) = D(G)−1/2 Q(G)D(G)−1/2 = In +R(G)

where In is the n×n unit matrix and R(G) is the Randić matrix. Throughout this paper, the
eigenvalues of R(G), L (G) and L + (G) (or Randić, normalized Laplacian and normalized
signless Laplacian eigenvalues of G) will be denoted by ρ1 ≥ ρ2 ≥ ·· · ≥ ρn, γ1 ≥ γ2 ≥ ·· · ≥
γn−1 > γn = 0 and γ+1 ≥ γ+2 ≥ ·· · ≥ γ+n ≥ 0, respectively. Details on these eigenvalues can
be found in [2, 9, 11].

Let I (G) be the vertex-edge incidence matrix of the graph G. The i j-entry of I (G) is
1 if vi is incident to e j and 0 otherwise. The incidence energy of G, denoted by IE(G), is
defined as the energy of its incidence matrix [18]. Since Q(G) = I (G) I (G)T , Gutman et
al. also discovered that [17]

IE(G) =
n

∑
i=1

√
qi ,

where q1 ≥ q2 ≥ ·· · ≥ qn ≥ 0 are the eigenvalues of Q(G) [12]. For the basic properties
and several lower and upper bounds of IE(G), see [4, 13, 18, 23].

Gu et al. [14] and Cheng and Liu [8] independently introduced the Randić (normal-
ized) incidence matrix of G as IR (G) = D(G)−1/2 I (G) and referred to its energy as the
Randić (normalized) incidence energy IRE (G) of G. Since L + (G) = IR (G) IR (G)T , in full
analogous manner with the incidence energy, it was also pointed out that [8, 14]

IRE (G) =
n

∑
i=1

√
γ+i . (1.2)

For the recent results on IRE (G), see [8, 14, 22, 30].
This survey is organized in the following way. In Section 2, we recall some known

results regarding the normalized signless Laplacian eigenvalues. In Section 3, we deal with
a few elementary properties of IRE (G). In Sections 4 and 5, some lower and upper bounds
for IRE (G) are given. In Section 6, the results on the Coulson integral formula of IRE (G)
are presented.

2 Some Known Results

In this section, we recall some known results associated with the normalized signless Lapla-
cian eigenvalues of graphs.

Lemma 2.1. [14] Let G be a graph of order n with no isolated vertices. Then γ+i = 1+ρi,
for i = 1,2, . . . ,n.
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Lemma 2.2. [6] If G is a connected non–bipartite graph of order n, then γ+i > 0, for
i = 1,2, . . . ,n.

Lemma 2.3. [14] For a graph G with no isolated vertices, the largest normalized signless
Laplacian eigenvalue γ+1 = 2.

Let G̃ denote the subdivision graph of a graph G obtained by inserting additional vertex
into the each edge of G. If G is a graph with n vertices and m edges, then its subdivision
graph G̃ possesses n+m vertices and 2m edges.

Lemma 2.4. [8] Let G be a graph with n vertices and m edges and let G̃ be its subdivision
graph. If γ+i are the non-zero normalized signless Laplacian eigenvalues of G, then the

Randić eigenvalues of G̃ consist of the number ±
√

γ+i /2 i = 1,2, . . . ,h, and n+m− 2h
zeros.

Lemma 2.5. [8] Let G be a connected graph with diameter d and s distinct normalized
signless Laplacian eigenvalues. Then, d ≤ s−1.

Lemma 2.6. [14] Let G be a graph of order n ≥ 2 with no isolated vertices. Then γ+2 =
γ+3 = · · ·= γ+n = n−2

n−1 if and only if G ∼= Kn.

Lemma 2.7. [8] Suppose that the n-vertex connected graph G is not a complete graph.
If the normalized signless Laplacian eigenvalues are ordered as γ+1 ≥ γ+2 ≥ ·· · ≥ γ+n , then
γ+2 ≥ 1.

Recall that the general Randić index of a graph G is defined as R−1(G) = ∑i∼ j
1

did j
[7].

The following lower bound on the second largest normalized signless Laplacian eigenvalue
involving the parameter n and R−1(G) can be found in [24].

Lemma 2.8. [24] Let G be a connected non–bipartite graph with n ≥ 3 vertices. Then

γ+2 ≥ n+2R−1(G)−4
n−2

.

Equality holds if and only if G ∼= Kn.

Lemma 2.9. [6] Let G be a connected non–bipartite graph with n ≥ 3 vertices. Then

γ+n ≤ n−2R−1 (G)

n
≤ ∆−1

∆
≤ n−2

n−1

with equalities if and only if G ∼= Kn.

Lemma 2.10. [8] Let G be a graph of order n with no isolated vertices. Then

n

∑
i=1

γ+i = n and
n

∑
i=1

(γ+i )2 = n+2R−1(G) .



74 Ş. Burcu Bozkurt Altındağ

Lemma 2.11. [5] If G is a bipartite graph, then the eigenvalues of L (G) and L + (G)
coincide.

Let t(G) be the total number of spanning trees of G. Denote by G1 ×G2 the Cartesian
product of the graphs G1 and G2.

Lemma 2.12. [5, 11] Let G be a connected graph with n vertices, m edges and t (G)
spanning trees. If G is bipartite, then

n−1

∏
i=1

γi =
n−1

∏
i=1

γ+i =
2mt (G)

∏n
i=1 di

.

If G is non–bipartite, then
n

∏
i=1

γ+i =
2t (G×K2)

t (G)∏n
i=1 di

.

3 Elementary Properties of IRE (G)

The empty graph of order n is the graph with n isolated vertices and no edges. The Randić
(normalized) incidence energy IRE (G) has similar basic properties as graph energy.

Theorem 3.1. [8, 16] Let G be a graph of order n. Then

(a) E (G)≥ 0, IRE (G)≥ 0 with equalities if and only if G is an empty graph.

(b) If the graph G consists of two connected components G1 and G2, then E (G) =
E (G1)+E (G2) and IRE (G) = IRE (G1)+ IRE (G2).

(c) If one component of the graph G is G1 and all other components are isolated vertices,
then E (G) = E (G1) and IRE (G) = IRE (G1).

By full analogy with the graph energy given by (1.1), the Randić energy of a graph G
was defined as follows [2]

RE (G) =
n

∑
i=1

|ρi|.

Considering the result in Lemma 2.4, Cheng and Liu [8] obtained the following relation
between the Randić (normalized) incidence energy of a graph and Randić energy of its
subdivision graph.

Theorem 3.2. [8] Let G be a graph with n vertices and m edges and let G̃ be its subdivision
graph. Then, IRE (G) =

√
2

2 RE
(

G̃
)
.

Let α be a real number. The sum of the αth powers of the non-zero normalized Lapla-
cian eigenvalues of a connected graph G was defined as [3]

sα (G) =
n−1

∑
i=1

γα
i .
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This sum generalizes various graph invariants. For more details, see [1, 19]. For α = 1/2,
s1/2 (G) is equal to the Laplacian incidence energy of G, defined by [31] (see also, [27,28])

LIE (G) =
n−1

∑
i=1

√
γi.

Recently, the the sum of the αth powers of the normalized signless Laplacian eigenval-
ues of G was put forward as [5]

σα (G) =
n

∑
i=1

(
γ+i
)α

.

Note that σ1/2 (G)= IRE (G), defined by (1.2). Recall from Lemma 2.11 that the normalized
Laplacian and the normalized signless Laplacian eigenvalues coincide. By the fact that, the
following result was given in [5].

Theorem 3.3. [5] If G is a bipartite graph, then σα (G) coincide with sα (G). In particular,
for bipartite graphs, IRE (G) = LIE (G).

4 Lower Bounds for IRE (G)

Let Kn and Kp,q (p+q = n) be the complete graph and the complete bipartite graph of order
n, respectively. We now give some lower bounds on IRE(G).

Theorem 4.1. [8,14] Let G be a graph of order n with no isolated vertices. Then, IRE(G)≥√
n with equality if and only if G ∼= K2.

Theorem 4.2. [8] Let G be a graph of order n with no isolated vertices. Then,

IRE(G)≥

√
2n3

4n−1+(−1)n .

Equality holds if and only if n is even and G is disjoint union of n
2 paths of length 1.

Corollary 4.1. [8] Let G be a graph of order n with no isolated vertices. Then

IRE(G)≥ n√
2
. (4.1)

Equality holds if and only if n is even and G is disjoint union of n
2 paths of length 1.

For a subset E ′ ⊆ E, the subgraph of G obtained by deleting the edges in E ′ is denoted
by G−E ′. If E ′ contains only one edge e, then G−E ′ is denoted by G− e.

Theorem 4.3. [14] Let G be a graph and E ′ be a nonempty subset of E. Then

IRE (G)> IRE
(
G−E ′) .
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When the edge subset E ′ contains exactly one edge, Gu et al. [14] established the fol-
lowing result.

Theorem 4.4. [14] Let G be a connected graph, e = viv j be an edge of G. Then

IRE(G)≥

√
1
di
+

1
d j

+[IRE (G− e)]2 .

Equality holds if and only if G ∼= K2.

The clique number ω = ω (G) of a graph G is equal to the number of vertices in a
maximum clique. By the fact that IRE(Kn) =

√
2+

√
(n−1)(n−2), the following result

was presented in [14].

Corollary 4.2. [14] Let G be a non-empty graph with clique number ω . Then,

IRE(G)≥
√

2+
√
(ω −1)(ω −2).

In particular, if G has at least one edge then IRE(G)≥
√

2.

The following relation exists between IRE(G) and Laplacian incidence energy.

Theorem 4.5. [31] Let G be a connected graph of order n. Then

IRE(G)≥ LIE (G) .

Equality holds if G is a bipartite graph [5].

Corollary 4.3. [31] Let G be a connected graph of order n with minimum degree δ and γ1
the spectral radius of L (G). Then

IRE(G)≥ nmax

{
γ−1/2

1 ,

√
δ

δ +1

}
. (4.2)

Remark 4.1. [31] The lower bound (4.2) is stonger than the lower bound (4.1).

Theorem 4.6. [24] Let G be a connected non–bipartite graph with n ≥ 3 vertices. Then,
for any α , γ+2 ≥ α ≥ 1, holds

IRE (G)>
√

2+
√

α +n−2+
1
2

ln
(

t(G×K2)

α t(G)∏n
i=1 di

)
.

Corollary 4.4. [24] Let G, G�Kn, be a connected non–bipartite graph with n≥ 3 vertices.
Then,

IRE (G)>
√

2+n−1+
1
2

ln
(

t(G×K2)

t(G)∏n
i=1 di

)
.
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Theorem 4.7. [24] Let G be a connected bipartite graph with n ≥ 3 vertices, m edges and
t (G) spanning trees. Then, for any α , γ+2 = γ2 ≥ α ≥ 1, holds

IRE (G) = LIE (G)≥
√

2+
√

α +n−3+
1
2

ln
(

mt (G)

α ∏n
i=1 di

)
.

Equality holds if and only if α = 1 and G ∼= Kp,q, p+q = n.

Corollary 4.5. [24] Let G be a connected bipartite graph with n ≥ 3 vertices, m edges and
t (G) spanning trees. Then,

IRE (G) = LIE (G)≥
√

2+n−2+
1
2

ln
(

mt (G)

∏n
i=1 di

)
.

Equality holds if and only if G ∼= Kp,q, p+q = n.

It should be noted that the remaining lower bounds of this section were actually obtained
in more general forms in [5, 6, 19].

Theorem 4.8. [5] Let G be a connected non-bipartite graph with n ≥ 3 vertices. Then

IRE(G)≥
√

2+

√
n−2+(n−1)(n−2)

(
t (G×K2)

t (G)∏n
i=1 di

)1/(n−1)

.

Equality holds if and only if G ∼= Kn.

Theorem 4.9. [5] Let G be a connected bipartite graph with n ≥ 3 vertices, m edges and
t (G) spanning trees. Then

IRE(G) = LIE (G)≥
√

2+

√
n−2+(n−2)(n−3)

(
mt (G)

∏n
i=1 di

)1/(n−2)

.

Equality holds if and only if G ∼= Kp,q, p+q = n.

Recall that every tree is bipartite . Furthermore, for a tree T , m = n−1 and t (T ) = 1.
Then, from Theorem 4.9, it can be deduced that:

Corollary 4.6. [5] Let T be a tree with n ≥ 3 vertices. Then

IRE(T ) = LIE (T )≥
√

2+

√
n−2+(n−2)(n−3)

(
n−1

∏n
i=1 di

)1/(n−2)

.

Equality holds if and only if T ∼= K1,n−1.

Theorem 4.10. [5] Let G be a connected non-bipartite graph with n ≥ 3 vertices. Then,
there exists a real number ε ≥ 0 such that

IRE(G)≥
√

2+(n−1)
(

t (G×K2)

t (G)∏n
i=1 di

)1/2(n−1)

+ ε.



78 Ş. Burcu Bozkurt Altındağ

Theorem 4.11. [19] Let G be a connected bipartite graph with n ≥ 3 vertices, m edges
and t (G) spanning trees. Then, there exists a real number ε ≥ 0 such that

IRE(G) = LIE (G)≥
√

2+(n−2)
(

mt (G)

∏n
i=1 di

)1/2(n−2)

+ ε .

Theorem 4.12. [6] Let G be a connected graph with n ≥ 3 vertices. Then

IRE (G)≥
√

2+(n−2)

√
n−2

n+2R−1 (G)−4
. (4.3)

Equality holds if and only if G ∼= Kn.

Remark 4.2. It is worth noting here that the lower bound (4.3) is stronger than the lower
bound (4.1) for connected graphs. As can be seen in the inequality below

√
2+(n−2)

√
n−2

n+2R−1 (G)−4
≥ n√

2

that is, √
2(n−2)

n+2R−1 (G)−4
≥ 1

this implies that
R−1 (G)≤ n

2
which is true for the general Randić index R−1 (G) , see [20].

Corollary 4.7. [6] Let G be a connected graph with n ≥ 3 vertices and minimum degree
δ . Then

IRE (G)≥
√

2+(n−2)

√
n−2

n
(
1+ 1

δ
)
−4

.

Equality holds if and only if G ∼= Kn

5 Upper Bounds for IRE (G)

In this section, we present some upper bounds on IRE(G) involving various structural graph
parameters.

Theorem 5.1. [8, 14] Let G be a connected graph of order n ≥ 2. Then

IRE(G)≤
√

2+
√
(n−1)(n−2) . (5.1)

Equality holds if and only if G ∼= Kn.
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Remark 5.1. [31] Among all graphs of order n, the empty graph has the minimum IRE(G)
while the complete graph Kn reaches the maximum.

Theorem 5.2. [8] Let G, G � Kn, be a connected graph of order n ≥ 2. Then

IRE(G)≤
√

2+1+
√

(n−2)(n−3) . (5.2)

Equality holds if and only if γ+1 = 2, γ+2 = 1 and γ+i = n−3
n−2 , for i = 3, . . . ,n.

Theorem 5.3. [14] Let G be a bipartite graph of order n with no isolated vertices. Then

IRE(G) = LIE(G)≤
√

2+n−2 . (5.3)

Equality holds if and only if G is a complete bipartite graph.

Remark 5.2. [14] Since every tree is a bipartite graph, for any tree T

IRE(T ) = LIE(T )≤
√

2+n−2

with equality if and only if T ∼= K1,n−1. Furthermore, among all trees with n vertices, the
star graph K1,n−1 is the unique graph with maximum Randić incidence energy.

Theorem 5.4. [24] Let G be a connected non–bipartite graph with n ≥ 3 vertices. Then

IRE(G)≤
√

2+

√√√√√n−1
2

2(n−2)−

(√
n+2R−1(G)−4

n−2
−
√

n−2R−1(G)

n

)2
 .

Equality holds if and only if G ∼= Kn.

Theorem 5.5. [24] Let G be a connected non–bipartite graph with n ≥ 3 vertices. Then,

for any α , γ+2 ≥ α ≥
√

n+2R−1(G)−4
n−1 , holds

IRE(G)≤
√

2+
√

α +
(
(n−2)3(n+2R−1(G)−4−α2)

)1/4
.

Equality holds if and only if α = n−2
n−1 and G ∼= Kn.

Corollary 5.1. [24] Let G be a connected non–bipartite graph with n ≥ 3 vertices. Then

IRE(G)≤
√

2+((n−1)3(n+2R−1(G)−4))1/4 .

Equality holds if and only if G ∼= Kn.

Corollary 5.2. [24] Let G be a connected non–bipartite graph with n ≥ 3 vertices and
minimum degree δ . Then

IRE(G)≤
√

2+
(
(n−1)3

(
n(1+δ )

δ
−4
))1/4

.

Equality holds if and only if G ∼= Kn.
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Theorem 5.6. [24] Let G be a connected bipartite graph with n ≥ 3 vertices. Then, for

any α , γ+2 = γ2 ≥ α ≥
√

n+2R−1(G)−4
n−2 , holds

IRE(G) = LIE(G)≤
√

2+
√

α +
(
(n−3)3(n+2R−1(G)−4−α2)

)1/4
.

Equality holds if and only if α = 1 and G ∼= Kp,q, p+q = n.

Corollary 5.3. [24] Let G be a connected bipartite graph with n ≥ 3 vertices. Then

IRE(G) = LIE(G)≤
√

2+
(
(n−2)3(n+2R−1(G)−4)

)1/4
.

Equality holds if and only if G ∼= Kp,q, p+q = n.

Theorem 5.7. [24] Let G be a connected non–bipartite graph with n ≥ 3 vertices. Then,
for any α , γ+2 ≥ α ≥ n−2

n−1 , holds

IRE(G)≤
√

2+
√

α +
√

(n−2)(n−2−α) . (5.4)

Equality holds if and only if α = n−2
n−1 and G ∼= Kn.

Remark 5.3. [24] The upper bounds (5.1) and (5.2) are, respectively, obtained from (5.4)
for α = n−2

n−1 and α = 1.

Theorem 5.8. [24] Let G be a connected bipartite graph with n ≥ 3 vertices. Then, for
any α , γ+2 = γ2 ≥ α ≥ 1, holds

IRE(G) = LIE(G)≤
√

2+
√

α +
√
(n−3)(n−2−α) . (5.5)

Equality holds if and only if α = 1 and G ∼= Kp,q, p+q = n.

Remark 5.4. [24] Note that the inequality (5.3) is obtained from (5.5) for α = 1.

It is worth mentioning that the remaining upper bounds of this section were established
in more general forms in [5, 6].

Theorem 5.9. [5] Let G be a connected non-bipartite graph with n ≥ 3 vertices. Then

IRE(G)≤
√

2+

√
(n−2)2 +(n−1)

(
t (G×K2)

t (G)∏n
i=1 di

)1/(n−1)

. (5.6)

Equality holds if and only if G ∼= Kn.

Remark 5.5. [5] By using arithmetic-geometric mean inequality, it can be easily shown
that the upper bound (5.6) is better than the upper bound (5.1) for connected non-bipartite
graphs.
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Theorem 5.10. [5] Let G be a connected bipartite graph with n ≥ 3 vertices, m edges and
t (G) spanning trees. Then

IRE(G) = LIE (G)≤
√

2+

√
(n−2)(n−3)+(n−2)

(
mt (G)

∏n
i=1 di

)1/(n−2)

. (5.7)

Equality holds if and only if G ∼= Kp,q, p+q = n.

Remark 5.6. [5] From arithmetic-geometric mean inequality, it can be seen that the upper
bound (5.7) is stronger than the upper bound (5.3) for connected bipartite graphs. More-
over, the upper bound (5.3) was obtained in more general form in Theorem 3.7 of [3].

For a tree T , m = n−1 and t (T ) = 1. The following result is obvious from (5.7).

Corollary 5.4. [5] Let T be a tree with n ≥ 3 vertices. Then

IRE(T ) = LIE (T )≤
√

2+

√
(n−2)(n−3)+(n−2)

(
n−1

∏n
i=1 di

)1/(n−2)

.

Equality holds if and only if T ∼= K1,n−1.

Theorem 5.11. [6] Let G be a connected non-bipartite graph with n ≥ 3 vertices. Then

IRE(G)≤
√

2+

√
1− 2R−1 (G)

n
+

√
(n−2)

(
n−3+

2R−1 (G)

n

)
. (5.8)

Equality holds if and only if G ∼= Kn.

Theorem 5.12. [6] Let G be a connected non-bipartite graph with n ≥ 3 vertices and
maximum degree ∆. Then

IRE(G)≤
√

2+

√
1− 1

∆
+

√
(n−2)

(
n−3+

1
∆

)
. (5.9)

Equality holds if and only if G ∼= Kn.

Remark 5.7. [6] The upper bounds (5.8) and (5.9) are better than the upper bound (5.1)
for connected non-bipartite graphs. Furthermore, (5.8) is the best for IRE (G) among the
mentioned upper bounds.

Theorem 5.13. [6] Let G be a connected bipartite graph with bipartition V = X ∪Y and
p= |X |> 1, q= |Y |> 1. If G∼=Kp,q, then IRE (G)= LIE (G)=

√
2+n−2 [14]. Otherwise,

IRE (G) = LIE (G)≤
√

2+

√
1+

1
√

pq
+

√
1− 1

√
pq

+n−4. (5.10)

Equality holds if and only if G ∼= Kp,q − e (e is any edge in Kp,q).
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Remark 5.8. [6] Notice that the upper bound (5.10) is better than the upper bound (5.3)
for any connected bipartite graph G (� Kp,q) with bipartition V = X ∪Y and p = |X |> 1,
q = |Y |> 1.

Remark 5.9. [6] Among all connected bipartite graphs except complete biparite graph,
Kp,q − e has the maximum Randić (normalized) incidence energy or Laplacian incidence
energy.

6 Coulson Integral Formula of IRE (G)

As early as the 1940s [10], Coulson obtained the following integral formula for graph en-
ergy

E (G) =
1
π

+∞∫
−∞

[
n− ixϕ ′ (A(G) , ix)

ϕ (A(G) , ix)

]
dx

where ϕ (A(G) ,x) is the characteristic polynomial of the adjacency matrix A(G) of the n-
vertex graph G. This fomula is known as Coulson integral formula in the literature. Its
generalization [25] directly implies the following integral formula for Randić (normalized)
incidence energy [8].

Theorem 6.1. [8] Let G be a graph of order n and ϕ (L + (G) ,x) be the characteristic
polynomial of its normalized signless Laplacian matrix L + (G). Then

IRE(G) =
1

2π

+∞∫
−∞

[
2n− ix f ′ (ix)

f (ix)

]
dx

where f (x) = ϕ
(
L + (G) ,x2

)
.

The coefficient form of the characteristic polynomial of the normalized signless Lapla-
cian matrix L + (G) can be expressed as [8]

ϕ
(
L + (G) ,x

)
=

n

∑
k=0

(−1)k bk (G)xn−k. (6.1)

The another way to write the Coulson integral formula was presented in [8] as follows:

Theorem 6.2. [8] Let G be a graph of order n and let ϕ (L + (G) ,x) be of the form given
by (6.1). Then

IRE(G) =
1
π

+∞∫
0

ln

(
n

∑
k=0

bk (G)x2k

)
dx
x2 .

In [8], It was also pointed out that the above result makes it possible to compare the
Randić (normalized) incidence energies of two graphs.

Corollary 6.1. [8] Let G1 and G2 be two n-vertex graphs. If bk (G1)≤ bk (G2) for 0≤ k≤ n,
then IRE(G1)≤ IRE(G2). Moreover, if a strict inequality bk (G1)< bk (G2) holds for some
0 ≤ k ≤ n, then IRE(G1)< IRE(G2).
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[2] Ş. B. BOZKURT, A. D. GUNGOR, I. GUTMAN, A. S. CEVIK, Randić matrix and Randić
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[4] Ş. B. BOZKURT, D. BOZKURT,On incidence energy, MATCH Commun. Math. Comput.
Chem. 72 (2014) 215-225.
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Randić index R−1 of graphs, Lin. Algebra Appl. 433 (2010) 172–190.

[8] B. CHENG, B. LIU, The normalized incidence energy of a graph, Lin. Algebra Appl. 438 (11)
(2013) 4510–4519.

[9] F. R. K. CHUNG,Spectral Graph Theory, Am. Math. Soc. Providence, 1997.

[10] C. A. COULSON, On the calculation of the energy in unsaturated hydrocarbon molecules,
Math. Proc. Cambridge Philos. Soc. 36 (1940) 201–203.
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sum of powers of normalized Laplacian eigenvalues of a graph, Appl. Math. Comput. 324
(2018) 82–92.

[20] X. LI, Y. YANG, Sharp bounds for the general Randić index, MATCH Commun. Math. Com-
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[25] M. MATELJEVIĆ, V. BOŽIN, I.GUTMAN, Energy of a polynomial and the Coulson integral
formula, J. Math. Chem. 48 (2010) 1062–1068.

[26] R. MERRISLaplacian matrices of graphs, A survey, Lin. Algebra Appl. 197–198 (1994) 143–
146.
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