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A Survey on Randi¢ (Normalized) Incidence Energy of Graphs

S. Burcu Bozkurt Altindag

Abstract: For a graph G of order n with normalized signless Laplacian eigenvalues }/1+ > }/2+ >
-+ > yF >0, the Randi¢ (normalized) incidence energy is defined as IRE(G) = Y1 /7.

In this paper, we present a survey on the results of IrE (G), especially with emphasis on the
properties, bounds and Coulson integral formula of IrE (G).

1 Introduction

All graphs considered in this paper are simple finite undirected graphs. The terminology
and notation not defined here can be found in [11].

Let G = (V,E) be a graph with n vertices and m edges. The vertex set and edge set
of G are, respectively, denoted by V = {vy,v2,...,v,} and E = {ej,e2,...,en}. Let d; be
the degree of the vertex v; € V, i =1,2,...,n. Denote by é and A the minimum degree and
the maximum degree of G, respectively. If v; and v; are two adjacent vertices of G, then
it is written as i ~ j. Let A (G) = (a;j) be the (0, 1)-adjacency matrix of the graph G. It is
defined by a;; = 1 if i ~ j and O otherwise. The eigenvalues 4| > A, > --- > 4, of A(G)
are the (ordinary) eigenvalues of G [11].

For a graph G, the (ordinary) graph energy was introduced as the sum of absolute values
of its eigenvalues [15]. It is defined as

n

E(G)=Y |Al. (1.1)

i=1

For details on the theory of E(G), see [21] and the references cited therein.

As the generalization of the graph energy concept, the energy of a real matrix (not
necessarily square) M, denoted by E (M), is defined by Nikiforov [29] as the sum of its
singular values that are equal to the square roots of the eigenvalues of MMT, where M7 is
the transpose of M. Especially, for a graph G, E(G) = E(A(G)).

Denote by L(G) =D (G) —A(G) and Q(G) = D(G) + A (G) the Laplacian matrix and
the signless Laplacian matrix of G, respectively [26]. Here, D(G) = diag (dy,d>,...,d,)
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is the diagonal degree matrix of G. For a graph G without isolated vertices, the matrix
D (G)fl/ % is well defined. Then, the normalized Laplacian matrix is defined as

Z(G)=D(G)"V*L(G)D(G)"*=1,—R(G)
and the normalized signless Laplacian matrix as [9]
£ (G)=D(G) *0(G)D(G)""*=1,+R(G)

where I, is the n X n unit matrix and R (G) is the Randi¢ matrix. Throughout this paper, the
eigenvalues of R (G), £ (G) and £ (G) (or Randié, normalized Laplacian and normalized
signless Laplacian eigenvalues of G) will be denoted by p1 > p2 > --- > pup, 1 >H >+ >
Yi—1> %, =0 and )/1+ > y;’ > 2> }/,j’ > 0, respectively. Details on these eigenvalues can
be found in [2,9, 11].

Let I (G) be the vertex-edge incidence matrix of the graph G. The ij-entry of I (G) is
1 if v; is incident to e; and O otherwise. The incidence energy of G, denoted by IE(G), is
defined as the energy of its incidence matrix [18]. Since Q(G) =1(G)I(G)", Gutman et
al. also discovered that [17]

IE(G) = Zlﬁ

where g; > g2 > -++ > g, > 0 are the eigenvalues of Q (G) [12]. For the basic properties
and several lower and upper bounds of IE(G), see [4,13,18,23].

Gu et al. [14] and Cheng and Liu [8] independently introduced the Randi¢ (normal-
ized) incidence matrix of G as Iz (G) =D (G)_l/ 21 (G) and referred to its energy as the
Randi¢ (normalized) incidence energy IxE (G) of G. Since £+ (G) = Iz (G) Iz (G)", in full
analogous manner with the incidence energy, it was also pointed out that 8, 14]

IRE(G) =Y \/ylj (1.2)
i=1

For the recent results on IxE (G), see [8, 14,22,30].

This survey is organized in the following way. In Section 2, we recall some known
results regarding the normalized signless Laplacian eigenvalues. In Section 3, we deal with
a few elementary properties of IzE (G). In Sections 4 and 5, some lower and upper bounds
for IxE (G) are given. In Section 6, the results on the Coulson integral formula of IRE (G)
are presented.

2 Some Known Results

In this section, we recall some known results associated with the normalized signless Lapla-
cian eigenvalues of graphs.

Lemma 2.1. [14] Let G be a graph of order n with no isolated vertices. Then ¥ =1+ p;,
fori=1,2,...,n.
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Lemma 2.2. [6] If G is a connected non-bipartite graph of order n, then v > 0, for
i=1,2,...,n

Lemma 2.3. [14] For a graph G with no isolated vertices, the largest normalized signless
Laplacian eigenvalue }/1+ =2

Let G denote the subdivision graph of a graph G obtained by inserting additional vertex
into the each edge of G. If G is a graph with n vertices and m edges, then its subdivision
graph G possesses n + m vertices and 2m edges.

Lemma 2.4. [8] Let G be a graph with n vertices and m edges and let G be its subdivision
graph. If 7;'+ are the non-zero normalized signless Laplacian eigenvalues of G, then the

Randié¢ eigenvalues of G consist of the number £1/v*/2 i=1,2,...,h, and n+m —2h
zeros.

Lemma 2.5. [8] Let G be a connected graph with diameter d and s distinct normalized
signless Laplacian eigenvalues. Then, d < s — 1.

Lemma 2.6. [14] Let G be a graph of order n > 2 with no isolated vertices. Then ;" =
W==y= % if and only if G = K,,.

Lemma 2.7. [8] Suppose that the n-vertex connected graph G is not a complete graph.

If the normalized signless Laplacian eigenvalues are ordered as 71+ > y2+ > ... >, then
+

% =L

Recall that the general Randi¢ index of a graph G is defined as R 1(G) =Y, ; ﬁdj [7].
The following lower bound on the second largest normalized signless Laplacian eigenvalue
involving the parameter n and R_;(G) can be found in [24].

Lemma 2.8. [24] Let G be a connected non—bipartite graph with n > 3 vertices. Then

n+2R_;(G)—4
> (G)—4
n—2

Equality holds if and only if G = K,,.
Lemma 2.9. [6] Let G be a connected non—bipartite graph with n > 3 vertices. Then

n—2R_;(G) A—-1 _n-2
< <
n - A T n-1

%<

with equalities if and only if G = K,,.

Lemma 2.10. [8] Let G be a graph of order n with no isolated vertices. Then

D=

v o=n and  Y(7)P=n+2R1(G).
1 i=1
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Lemma 2.11. [5] If G is a bipartite graph, then the eigenvalues of £ (G) and £ (G)
coincide.

Let #(G) be the total number of spanning trees of G. Denote by G x G, the Cartesian
product of the graphs G| and G,.

Lemma 2.12. [5,11] Let G be a connected graph with n vertices, m edges and t (G)
spanning trees. If G is bipartite, then

i 2mi(G)

i=1%

i=1 i=1

If G is non—bipartite, then
fI + 2t (G X Kz)
O

i=1 i=1%

3 Elementary Properties of IxE (G)

The empty graph of order n is the graph with n isolated vertices and no edges. The Randié
(normalized) incidence energy IrE (G) has similar basic properties as graph energy.

Theorem 3.1. [8,16] Let G be a graph of order n. Then
(a) E(G) >0, IxE (G) > 0 with equalities if and only if G is an empty graph.

(b) If the graph G consists of two connected components Gy and Gy, then E(G) =
E(G))+E(Gy) and IRE (G) = IRE (G)) + IrE (G>).

(c) If one component of the graph G is G1 and all other components are isolated vertices,
then E (G) = E (G1) and IrE (G) = IgE (G1).

By full analogy with the graph energy given by (1.1), the Randi¢ energy of a graph G
was defined as follows [2]

RE (G) =im.

Considering the result in Lemma 2.4, Cheng and Liu [8] obtained the following relation
between the Randi¢ (normalized) incidence energy of a graph and Randi¢ energy of its
subdivision graph.

Theorem 3.2. [8] Let G be a graph with n vertices and m edges and let G be its subdivision
graph. Then, IRE (G) = gRE (6) .

Let o be a real number. The sum of the ath powers of the non-zero normalized Lapla-
cian eigenvalues of a connected graph G was defined as [3]

n—1
5q (G) = ;yf‘
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This sum generalizes various graph invariants. For more details, see [1,19]. For a = 1/2,
s1/2 (G) is equal to the Laplacian incidence energy of G, defined by [31] (see also, [27,28])

n—1
LIE (G) = ; VY-

Recently, the the sum of the oith powers of the normalized signless Laplacian eigenval-
ues of G was put forward as [5]

64 (G) = z ().

Note that 6} /; (G) = IRE (G), defined by (1.2). Recall from Lemma 2.11 that the normalized
Laplacian and the normalized signless Laplacian eigenvalues coincide. By the fact that, the
following result was given in [5].

Theorem 3.3. [5] If G is a bipartite graph, then 64 (G) coincide with s (G). In particular,
for bipartite graphs, IxE (G) = LIE (G).

4 Lower Bounds for IgxE (G)

Let K, and K, ; (p+q = n) be the complete graph and the complete bipartite graph of order
n, respectively. We now give some lower bounds on IzE(G).

Theorem 4.1. [8,14] Let G be a graph of order n with no isolated vertices. Then, IRE(G) >
\/n with equality if and only if G = K.

Theorem 4.2. [8] Let G be a graph of order n with no isolated vertices. Then,

2n3
RE(G)>|————
RE(G) = dn—1+4(—1)"

Equality holds if and only if n is even and G is disjoint union of 5 paths of length 1.

Corollary 4.1. [8] Let G be a graph of order n with no isolated vertices. Then

IRE(G) > 4.1

S

Equality holds if and only if n is even and G is disjoint union of 5 paths of length 1.

For a subset E’ C E, the subgraph of G obtained by deleting the edges in E’ is denoted
by G — E'. If E’ contains only one edge e, then G — E’ is denoted by G — e.

Theorem 4.3. [14] Let G be a graph and E’ be a nonempty subset of E. Then

IRE (G) > IRE (G—E').
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When the edge subset E’ contains exactly one edge, Gu et al. [14] established the fol-
lowing result.

Theorem 4.4. [14] Let G be a connected graph, e = v;v; be an edge of G. Then

IRE(G) > \/; + ;,- URE (G—e)].

Equality holds if and only if G = K5.

The clique number ® = ®(G) of a graph G is equal to the number of vertices in a

maximum clique. By the fact that IzxE(K,) = V2 + +/(n—1)(n—2), the following result
was presented in [14].

Corollary 4.2. [14] Let G be a non-empty graph with clique number ®. Then,
RE(G) > V24 /(0 —1)(0—2).
In particular, if G has at least one edge then IRE(G) > /2.
The following relation exists between IgE(G) and Laplacian incidence energy.
Theorem 4.5. [31] Let G be a connected graph of order n. Then
IRE(G) > LIE (G).
Equality holds if G is a bipartite graph [5].

Corollary 4.3. [31] Let G be a connected graph of order n with minimum degree 6 and
the spectral radius of £ (G). Then

IRE(G) znmax{yl‘”,,/(sil}. 4.2)

Remark 4.1. [31] The lower bound (4.2) is stonger than the lower bound (4.1).
Theorem 4.6. [24] Let G be a connected non—bipartite graph with n > 3 vertices. Then,

for any «, 72+ > o > 1, holds

IRE(G)>\f2+\/a+n_2+;ln<m>‘
i=1%1

Corollary 4.4. [24] Let G, G 2 K,,, be a connected non—bipartite graph with n > 3 vertices.

Then,
l(G X Kz) >

1
IRE (G 2 —14+=1
RE (G) >V2+4n +2n<t(G) g
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Theorem 4.7. [24] Let G be a connected bipartite graph with n > 3 vertices, m edges and
t (G) spanning trees. Then, for any Q, ¥, =1, > a > 1, holds

2 T di

i=1

IxE (G) = LIE (G) Z\f2+\/a+n—3+lln ((x’m(c)) .

Equality holds if and only if « = 1 and G =K, 4, p+q = n.

Corollary 4.5. [24] Let G be a connected bipartite graph with n > 3 vertices, m edges and
t (G) spanning trees. Then,

IRE (G) = LIE (G) zﬁ+n2+1ln(

! mt(G))‘

i1 di
Equality holds if and only if G = K, 4, p+q =n.

It should be noted that the remaining lower bounds of this section were actually obtained
in more general forms in [5, 6, 19].

Theorem 4.8. [5] Let G be a connected non-bipartite graph with n > 3 vertices. Then

t(Gx K») >1ﬂnl>

IRE(G) > V2 -2 —1)(n=2
RE( )_f+\/n +(n—1)(n )(I(G) o
Equality holds if and only if G = K,,.

Theorem 4.9. [5] Let G be a connected bipartite graph with n > 3 vertices, m edges and
t (G) spanning trees. Then

mt (G) 1/(n=2)
IRE(G) = LIE (G) > V2 + n—2—|—(n—2)(n—3)( - d) .
i=14i
Equality holds if and only if G = K, 4, p+q = n.
Recall that every tree is bipartite . Furthermore, for atree T,m=n—1and¢(T) = 1.
Then, from Theorem 4.9, it can be deduced that:

Corollary 4.6. [5] Let T be a tree with n > 3 vertices. Then

11\ )
i=1%

Equality holds if and only if T = K 1.

Theorem 4.10. [5] Let G be a connected non-bipartite graph with n > 3 vertices. Then,
there exists a real number € > 0 such that

1/2(n—1)
IRE(G) > V2+ (n—1) (M) t+e.
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Theorem 4.11. [19] Let G be a connected bipartite graph with n > 3 vertices, m edges
and t (G) spanning trees. Then, there exists a real number € > 0 such that

mt (G) /2 L
di '

IRE(G) = LIE (G) > V2+ (n—2) (

Theorem 4.12. [6] Let G be a connected graph with n > 3 vertices. Then

IRE(G) > V2+ (n—2) \/n+21:_7(2(;) — (4.3)

Equality holds if and only if G = K,,.

Remark 4.2. It is worth noting here that the lower bound (4.3) is stronger than the lower
bound (4.1) for connected graphs. As can be seen in the inequality below

n—2 n
Vat(n-2) \/n+2R1(G)—4 - V2

that is,

this implies that

which is true for the general Randi¢ index R_; (G), see [20].

Corollary 4.7. [6] Let G be a connected graph with n > 3 vertices and minimum degree
6. Then
n—2

IRE (G) >V2+(n—2) PrIES Yy
o

Equality holds if and only if G = K,

5 Upper Bounds for IRE (G)

In this section, we present some upper bounds on IxE(G) involving various structural graph
parameters.

Theorem 5.1. [8,14] Let G be a connected graph of order n > 2. Then

RE(G) <V2+4++/(n—1)(n—2). (5.1)

Equality holds if and only if G = K,,.
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Remark 5.1. [31] Among all graphs of order n, the empty graph has the minimum IRE (G)
while the complete graph K, reaches the maximum.

Theorem 5.2. [8] Let G, G 2 K,,, be a connected graph of order n > 2. Then
RE(G) <V2+14+/(n—2)(n—3). (5.2)

Equality holds if and only ifj/lJr =2, }/2+ =1and yi* = g,for i=3,...,n
Theorem 5.3. [14] Let G be a bipartite graph of order n with no isolated vertices. Then

IRE(G) = LIE(G) < V2+n—2. (5.3)
Equality holds if and only if G is a complete bipartite graph.
Remark 5.2. [14] Since every tree is a bipartite graph, for any tree T

IRE(T) = LIE(T) <V2+n—-2

with equality if and only if T = K; ,_1. Furthermore, among all trees with n vertices, the
star graph Ky ,,_1 is the unique graph with maximum Randic incidence energy.

Theorem 5.4. [24] Let G be a connected non—bipartite graph with n > 3 vertices. Then

2
IRE(G) < V2 + % 2(n_2)_(\/n+2R_1(G)—4_\/n—ZR_l(G)>

n—2 n

Equality holds if and only if G = K,,.
Theorem 5.5. [24] Let G be a connected non—bipartite graph with n > 3 vertices. Then,
for any o, 72+ > o > %, holds

IRE(G) < V2+va+ ((n—2)*(n+2R_,(G)—4—a?))"/*.

Equality holds if and only if o0 = % and G = K,,.

Corollary 5.1. [24] Let G be a connected non—bipartite graph with n > 3 vertices. Then
IRE(G) < V2+((n—1)*(n+2R_1(G) —4))'/*.

Equality holds if and only if G = K,,.

Corollary 5.2. [24] Let G be a connected non—bipartite graph with n > 3 vertices and
minimum degree 8. Then

IRE(G) < V2+ <(n— 1)3 <”(15+5) —4>>1/4 .

Equality holds if and only if G = K,,.
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Theorem 5.6. [24] Let G be a connected bipartite graph with n > 3 vertices. Then, for

any o, vy =p > o> %, holds

IRE(G) = LIE(G) < V2+va+ ((n—3)3(n+2R_(G) —4—a?))"/*.

Equality holds if and only if « = 1 and G =K, 4, p+q = n.

Corollary 5.3. [24] Let G be a connected bipartite graph with n > 3 vertices. Then

IRE(G) = LIE(G) < V2+ ((n—2)*(n+2R_(G) —4))/*.

Equality holds if and only if G =K, 4, p+q = n.

Theorem 5.7. [24] Let G be a connected non—bipartite graph with n > 3 vertices. Then,
for any a, 72+ > o > Z%%, holds

IRE(G) < V2+Va++/(n—2)(n—2—a). (5.4)
Equality holds if and only if o = % and G = K,

Remark 5.3. [24] The upper bounds (5.1) and (5.2) are, respectively, obtained from (5.4)
forazgandazl.

n—

Theorem 5.8. [24] Let G be a connected bipartite graph with n > 3 vertices. Then, for
any &, vy =7 > o> 1, holds

IRE(G) = LIE(G) < V2+Va++/(n-3)(n—2-a). (5.5)
Equality holds if and only if o« = 1 and G =K, 4, p+q = n.
Remark 5.4. [24] Note that the inequality (5.3) is obtained from (5.5) for o = 1.

It is worth mentioning that the remaining upper bounds of this section were established
in more general forms in [5, 6].

Theorem 5.9. [5] Let G be a connected non-bipartite graph with n > 3 vertices. Then

=
IRE(G) < V2 + \/(n—2)2+ (n—1) (M) . (5.6)

Equality holds if and only if G = K,,.

Remark 5.5. [5] By using arithmetic-geometric mean inequality, it can be easily shown
that the upper bound (5.6) is better than the upper bound (5.1) for connected non-bipartite
graphs.
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Theorem 5.10. [5] Let G be a connected bipartite graph with n > 3 vertices, m edges and
t (G) spanning trees. Then

mt (G) ) Ve 5.7)

IRE(G) = LIE (G) < \f2+\/(n—2)(n—3)+(n—2) ( ”d
i=14i

Equality holds if and only if G = K, 4, p+q =n.

Remark 5.6. [5] From arithmetic-geometric mean inequality, it can be seen that the upper

bound (5.7) is stronger than the upper bound (5.3) for connected bipartite graphs. More-

over, the upper bound (5.3) was obtained in more general form in Theorem 3.7 of [3].

Foratree T,m =n—1and ¢ (T) = 1. The following result is obvious from (5.7).

Corollary 5.4. [5] Let T be a tree with n > 3 vertices. Then

n—1 \ /02
IRE(T) = LIE (T) < V24 1/ (n—2) (n—3) + (n—2) <d> .
=1

Equality holds if and only if T = K ;1.

Theorem 5.11. [6] Let G be a connected non-bipartite graph with n > 3 vertices. Then

IRE(G)S\@—H/I—anl(G)—i-\/(n—Z)<n—3+2Rnl(G)>. (5.8)

Equality holds if and only if G = K,,.

Theorem 5.12. [6] Let G be a connected non-bipartite graph with n > 3 vertices and
maximum degree A. Then

IRE(G)gfoJrHJr\/(n—z) <n—3+i>. (5.9)

Equality holds if and only if G = K,,.

Remark 5.7. [6] The upper bounds (5.8) and (5.9) are better than the upper bound (5.1)
for connected non-bipartite graphs. Furthermore, (5.8) is the best for IRE (G) among the
mentioned upper bounds.

Theorem 5.13. [6] Let G be a connected bipartite graph with bipartition V =X UY and
p=|X|>1,q=Y|> 1. IfG=K,,, then IRE (G) = LIE (G) = v/2+n—2 [14]. Otherwise,

1 1
IRE(G)=LIE(G)<V2+ 1+ —+ /1 ——— +n—4. 5.10
RE (G) (G) < \/ NG \/ N n (5.10)

Equality holds if and only if G = K, , — e (e is any edge in K, ;).
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Remark 5.8. [6] Notice that the upper bound (5.10) is better than the upper bound (5.3)
for any connected bipartite graph G (2 K), ;) with bipartition V =X UY and p = |X| > 1,
=|Y|>1

Remark 5.9. [6] Among all connected bipartite graphs except complete biparite graph,
K, , — e has the maximum Randi¢ (normalized) incidence energy or Laplacian incidence
energy.

6 Coulson Integral Formula of IxE (G)

As early as the 1940s [10], Coulson obtained the following integral formula for graph en-

ergy »
1 ix¢' (A(G),ix)
£@=z/ e )

where ¢ (A (G),x) is the characteristic polynomial of the adjacency matrix A (G) of the n-
vertex graph G. This fomula is known as Coulson integral formula in the literature. Its
generalization [25] directly implies the following integral formula for Randi¢ (normalized)
incidence energy [8].

Theorem 6.1. [8] Let G be a graph of order n and ¢ (£ (G),x) be the characteristic
polynomial of its normalized signless Laplacian matrix £ (G). Then

IRE(G) = 5 /[ ’xf ]dx

where f(x) = ¢ (£ (G),x?).

The coefficient form of the characteristic polynomial of the normalized signless Lapla-
cian matrix . (G) can be expressed as [8]

n

¢ (Z7(G)x) =Y (1) b (G)x" . 6.1)

k=0

The another way to write the Coulson integral formula was presented in [8] as follows:

Theorem 6.2. [8] Let G be a graph of order n and let ¢ (£ (G) ,x) be of the form given

by (6.1). Then
d
IRE( /ln (Z bk ) 7;

0
In [8], It was also pointed out that the above result makes it possible to compare the
Randi¢ (normalized) incidence energies of two graphs.

Corollary 6.1. [8] Let G| and G, be two n-vertex graphs. If by, (Gy) < by (G2) for0 <k <n,

then IrRE(G1) < IRE(G2). Moreover, if a strict inequality by (G1) < by (G2) holds for some
0 <k <n, then IRE(G,) < IRE(G3).



A Survey on Randi¢ (Normalized) Incidence Energy of Graphs 83

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]
(10]

(11]
[12]

[13]

(14]
[15]

[16]

[17]

(18]

(19]

(20]

M. BIANCHI, A. CORNARO, J.L. PALACIOS, A. TORRIERO, Bounding the sum of powers
of normalized Laplacian eigenvalues of graphs through majorization methods, MATCH Com-
mun. Math. Comput. Chem. 70 (2013) 707-716.

S. B. BOZKURT, A. D. GUNGOR, I. GUTMAN, A. S. CEVIK, Randi¢ matrix and Randic¢
energy, MATCH Commun. Math. Comput. Chem. 64 (1) (2010) 239-250.

S. B. BOZKURT, D. BOZKURT, On the sum of powers of normalized Laplacian eigenvalues
of graphs, MATCH Commun. Math. Comput. Chem. 68 (2012) 917-930.

S. B. BOZKURT, D. BOZKURT,On incidence energy, MATCH Commun. Math. Comput.
Chem. 72 (2014) 215-225.

S. B. BOZKURT ALTINDAG, Note on the sum of powers of normalized signless Laplacian
eigenvalues of graphs, Math. Interdisc. Res. 4 (2) (2019) 171-182.

S. B. BOZKURT ALTINDAG,Sum of powers of normalized signless Laplacian eigenvalues
and Randi¢ (normalized) incidence energy of graphs, Bull. Inter. Math. Virtual Inst. 11 (2021)
135-146.

M. CAVERS, S. FALLAT, S. KIRKLAND, On the normalized Laplacian energy and general
Randié¢ index R_1 of graphs, Lin. Algebra Appl. 433 (2010) 172-190.

B. CHENG, B. L1U, The normalized incidence energy of a graph, Lin. Algebra Appl. 438 (11)
(2013) 4510-4519.

F. R. K. CHUNG,Spectral Graph Theory, Am. Math. Soc. Providence, 1997.

C. A. COULSON, On the calculation of the energy in unsaturated hydrocarbon molecules,
Math. Proc. Cambridge Philos. Soc. 36 (1940) 201-203.

D. CVETKOVIC, M. D0OOB, H. SACHS,Spectra of graphs, Academic press, New York, 1980.
D. CVETKOVIC, S. SIMIC, Towards a spectral theory of graphs based on the signless Lapla-
cian, 1, Publ. Inst. Math. (Beograd) 85 (2009) 19-33.

K. C. DaAs, I. GUTMAN,On incidence energy of graphs, Lin. Algebra Appl. 446 (2014) 329—
344,

R. GU, F. HUANG, X. L1, Randi¢ incidence energy of graphs, Trans. Comb. 3 (4) (2014) 1-9.
I. GUTMAN, The energy of a graph, Ber. Math. Statist. Sekt. Forschungsz, Graz, 103 (1978)
1-22.

I. GUTMAN, The energy of a graph: Old and new results, in: A. Betten, A. Kohnert, R. Laue,
A. Wassermann (Eds.), Algebraic Combinatorics and Applications, Springer—Verlag, Berlin,
2001, pp. 196-211.

I. GUTMAN, D. KIANI, M. MIRZAKHAH, On incidence energy of graphs, MATCH Commun.
Math. Comput. Chem. 62 (2009) 573-580.

M. JOOYANDEH, D. KIANI, M. MIRZAKHAH, Incidence energy of a graph, MATCH Com-
mun. Math. Comput. Chem. 62 (2009) 561-572.

I. L1, J. M. Guo, W. C. SHIU, S. B. BOZKURT ALTINDAG, D. BOZKURT, Bounding the
sum of powers of normalized Laplacian eigenvalues of a graph, Appl. Math. Comput. 324
(2018) 82-92.

X. L1, Y. YANG, Sharp bounds for the general Randi¢ index, MATCH Commun. Math. Com-
put. Chem. 51 (2004) 155-166.



84

(21]
(22]

(23]

(24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

S. Burcu Bozkurt Altindag

X. L1, Y. SHI, I. GUTMAN, Graph Energy, Springer, New York, 2012.

X. L1, Z. QIN, M. WEI, I GUTMAN, M. DEHMER, Novel inequalities for generalized graph
entropies-Graph energies and topological indices, Appl. Math. Comput. 259 (2015) 470-479.

M. L1u, B. L1U, On sum of powers of the signless Laplacian eigenvalues of graphs, Hacettepe
J. Math. Stat. 41 (3) (2012) 527-536.

M. MATEJIC, S. B. BOZKURT ALTINDAG, E. MILOVANOVIC, I. MILOVANOVIC,
On the Randi¢ incidence energy of graphs, Comp. Appl. Math. 40, 209 (2021).
https://doi.org/10.1007/s40314-021-01589-1.

M. MATELJEVIC, V. BOZIN, . GUTMAN, Energy of a polynomial and the Coulson integral
Sformula, J. Math. Chem. 48 (2010) 1062-1068.

R. MERRISLaplacian matrices of graphs, A survey, Lin. Algebra Appl. 197-198 (1994) 143—
146.

E.I. MILOVANOVIC, M.M. MATEIJIC, 1. Z. MILOVANOVIC, On the normalized Laplacian

spectral radius, Laplacian incidence energy and Kemeny’s constant, Linear Algebra Appl.
582 (2019) 181-196.

1. Z. MILOVANOVIC, E.I. MILOVANOVIC, M.R. POPOVI¢, R.M. STANKOVIC, Remark on

the Laplacian energy like and Laplacian incidence energy invariants of graphs, Creat. Math.
Inform. 24 (2015) 183-187.

V. NIKIFOROV, The energy of graphs and matrices, J. Math. Anal. Appl. 326 (2007) 1472—-
1475.

L. Q1Aa0, S. ZHANG, B. NING, J. L1, Coulson-type integral formulas for the general Lapla-
cian energy-like invariant of graphs I, J. Math. Anal. Appl. 435 (2016) 1249-1261.

L. SHI, H. WANG, The Laplacian incidence energy of graphs, Lin. Algebra Appl. 439 (12)
(2013) 4056-4062.



