A Survey on Randić (Normalized) Incidence Energy of Graphs

Ş. Burcu Bozkurt Altındağ

Abstract: For a graph *G* of order *n* with normalized signless Laplacian eigenvalues $\gamma_1^+ \ge \gamma_2^+ \ge \cdots \ge \gamma_n^+ \ge 0$, the Randić (normalized) incidence energy is defined as $I_R E(G) = \sum_{i=1}^n \sqrt{\gamma_i^+}$. In this paper, we present a survey on the results of $I_R E(G)$, especially with emphasis on the properties, bounds and Coulson integral formula of $I_R E(G)$.

1 Introduction

All graphs considered in this paper are simple finite undirected graphs. The terminology and notation not defined here can be found in [11].

Let G = (V, E) be a graph with *n* vertices and *m* edges. The vertex set and edge set of *G* are, respectively, denoted by $V = \{v_1, v_2, ..., v_n\}$ and $E = \{e_1, e_2, ..., e_m\}$. Let d_i be the degree of the vertex $v_i \in V$, i = 1, 2, ..., n. Denote by δ and Δ the minimum degree and the maximum degree of *G*, respectively. If v_i and v_j are two adjacent vertices of *G*, then it is written as $i \sim j$. Let $A(G) = (a_{ij})$ be the (0, 1)-adjacency matrix of the graph *G*. It is defined by $a_{ij} = 1$ if $i \sim j$ and 0 otherwise. The eigenvalues $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$ of A(G)are the (ordinary) eigenvalues of *G* [11].

For a graph G, the (ordinary) graph energy was introduced as the sum of absolute values of its eigenvalues [15]. It is defined as

$$E(G) = \sum_{i=1}^{n} |\lambda_i|.$$
 (1.1)

For details on the theory of E(G), see [21] and the references cited therein.

As the generalization of the graph energy concept, the energy of a real matrix (not necessarily square) M, denoted by E(M), is defined by Nikiforov [29] as the sum of its singular values that are equal to the square roots of the eigenvalues of MM^T , where M^T is the transpose of M. Especially, for a graph G, E(G) = E(A(G)).

Denote by L(G) = D(G) - A(G) and Q(G) = D(G) + A(G) the Laplacian matrix and the signless Laplacian matrix of *G*, respectively [26]. Here, $D(G) = diag(d_1, d_2, ..., d_n)$

Manuscript received August 2, 2021; accepted October 21, 2021.

Ş. Burcu Bozkurt Altındağ is with the Yenikent Kardelen Konutları, Selçuklu, 42070 Konya, Turkey

is the diagonal degree matrix of G. For a graph G without isolated vertices, the matrix $D(G)^{-1/2}$ is well defined. Then, the normalized Laplacian matrix is defined as

$$\mathscr{L}(G) = D(G)^{-1/2} L(G) D(G)^{-1/2} = I_n - R(G)$$

and the normalized signless Laplacian matrix as [9]

$$\mathscr{L}^{+}(G) = D(G)^{-1/2} Q(G) D(G)^{-1/2} = I_{n} + R(G)$$

where I_n is the $n \times n$ unit matrix and R(G) is the Randić matrix. Throughout this paper, the eigenvalues of R(G), $\mathscr{L}(G)$ and $\mathscr{L}^+(G)$ (or Randić, normalized Laplacian and normalized signless Laplacian eigenvalues of G) will be denoted by $\rho_1 \ge \rho_2 \ge \cdots \ge \rho_n$, $\gamma_1 \ge \gamma_2 \ge \cdots \ge \gamma_{n-1} > \gamma_n = 0$ and $\gamma_1^+ \ge \gamma_2^+ \ge \cdots \ge \gamma_n^+ \ge 0$, respectively. Details on these eigenvalues can be found in [2, 9, 11].

Let I(G) be the vertex-edge incidence matrix of the graph *G*. The *ij*-entry of I(G) is 1 if v_i is incident to e_j and 0 otherwise. The incidence energy of *G*, denoted by IE(G), is defined as the energy of its incidence matrix [18]. Since $Q(G) = I(G)I(G)^T$, Gutman et al. also discovered that [17]

$$IE(G) = \sum_{i=1}^n \sqrt{q_i},$$

where $q_1 \ge q_2 \ge \cdots \ge q_n \ge 0$ are the eigenvalues of Q(G) [12]. For the basic properties and several lower and upper bounds of IE(G), see [4, 13, 18, 23].

Gu et al. [14] and Cheng and Liu [8] independently introduced the Randić (normalized) incidence matrix of *G* as $I_R(G) = D(G)^{-1/2}I(G)$ and referred to its energy as the Randić (normalized) incidence energy $I_R E(G)$ of *G*. Since $\mathscr{L}^+(G) = I_R(G)I_R(G)^T$, in full analogous manner with the incidence energy, it was also pointed out that [8, 14]

$$I_{R}E(G) = \sum_{i=1}^{n} \sqrt{\gamma_{i}^{+}}.$$
 (1.2)

For the recent results on $I_R E(G)$, see [8, 14, 22, 30].

This survey is organized in the following way. In Section 2, we recall some known results regarding the normalized signless Laplacian eigenvalues. In Section 3, we deal with a few elementary properties of $I_R E(G)$. In Sections 4 and 5, some lower and upper bounds for $I_R E(G)$ are given. In Section 6, the results on the Coulson integral formula of $I_R E(G)$ are presented.

2 Some Known Results

In this section, we recall some known results associated with the normalized signless Laplacian eigenvalues of graphs.

Lemma 2.1. [14] Let G be a graph of order n with no isolated vertices. Then $\gamma_i^+ = 1 + \rho_i$, for i = 1, 2, ..., n.

Lemma 2.2. [6] If G is a connected non–bipartite graph of order n, then $\gamma_i^+ > 0$, for i = 1, 2, ..., n.

Lemma 2.3. [14] For a graph G with no isolated vertices, the largest normalized signless Laplacian eigenvalue $\gamma_1^+ = 2$.

Let \tilde{G} denote the subdivision graph of a graph G obtained by inserting additional vertex into the each edge of G. If G is a graph with n vertices and m edges, then its subdivision graph \tilde{G} possesses n + m vertices and 2m edges.

Lemma 2.4. [8] Let G be a graph with n vertices and m edges and let \widetilde{G} be its subdivision graph. If γ_i^+ are the non-zero normalized signless Laplacian eigenvalues of G, then the Randić eigenvalues of \widetilde{G} consist of the number $\pm \sqrt{\gamma_i^+/2}$ i = 1, 2, ..., h, and n + m - 2h zeros.

Lemma 2.5. [8] Let G be a connected graph with diameter d and s distinct normalized signless Laplacian eigenvalues. Then, $d \le s - 1$.

Lemma 2.6. [14] Let G be a graph of order $n \ge 2$ with no isolated vertices. Then $\gamma_2^+ = \gamma_3^+ = \cdots = \gamma_n^+ = \frac{n-2}{n-1}$ if and only if $G \cong K_n$.

Lemma 2.7. [8] Suppose that the n-vertex connected graph G is not a complete graph. If the normalized signless Laplacian eigenvalues are ordered as $\gamma_1^+ \ge \gamma_2^+ \ge \cdots \ge \gamma_n^+$, then $\gamma_2^+ \ge 1$.

Recall that the general Randić index of a graph G is defined as $R_{-1}(G) = \sum_{i \sim j} \frac{1}{d_i d_j}$ [7]. The following lower bound on the second largest normalized signless Laplacian eigenvalue involving the parameter n and $R_{-1}(G)$ can be found in [24].

Lemma 2.8. [24] Let G be a connected non–bipartite graph with $n \ge 3$ vertices. Then

$$\gamma_2^+ \ge \frac{n+2R_{-1}(G)-4}{n-2}$$

Equality holds if and only if $G \cong K_n$.

Lemma 2.9. [6] Let G be a connected non–bipartite graph with $n \ge 3$ vertices. Then

$$\gamma_n^+ \le \frac{n - 2R_{-1}(G)}{n} \le \frac{\Delta - 1}{\Delta} \le \frac{n - 2}{n - 1}$$

with equalities if and only if $G \cong K_n$.

Lemma 2.10. [8] Let G be a graph of order n with no isolated vertices. Then

$$\sum_{i=1}^{n} \gamma_{i}^{+} = n \quad and \quad \sum_{i=1}^{n} (\gamma_{i}^{+})^{2} = n + 2R_{-1}(G).$$

Lemma 2.11. [5] If G is a bipartite graph, then the eigenvalues of $\mathcal{L}(G)$ and $\mathcal{L}^+(G)$ coincide.

Let t(G) be the total number of spanning trees of G. Denote by $G_1 \times G_2$ the Cartesian product of the graphs G_1 and G_2 .

Lemma 2.12. [5, 11] Let G be a connected graph with n vertices, m edges and t(G) spanning trees. If G is bipartite, then

$$\prod_{i=1}^{n-1} \gamma_i = \prod_{i=1}^{n-1} \gamma_i^+ = \frac{2mt(G)}{\prod_{i=1}^n d_i}.$$

If G is non-bipartite, then

$$\prod_{i=1}^{n} \gamma_i^+ = \frac{2t \left(G \times K_2 \right)}{t \left(G \right) \prod_{i=1}^{n} d_i}.$$

3 Elementary Properties of $I_R E(G)$

The empty graph of order *n* is the graph with *n* isolated vertices and no edges. The Randić (normalized) incidence energy $I_{RE}(G)$ has similar basic properties as graph energy.

Theorem 3.1. [8, 16] Let G be a graph of order n. Then

- (a) $E(G) \ge 0$, $I_R E(G) \ge 0$ with equalities if and only if G is an empty graph.
- (b) If the graph G consists of two connected components G_1 and G_2 , then $E(G) = E(G_1) + E(G_2)$ and $I_R E(G) = I_R E(G_1) + I_R E(G_2)$.
- (c) If one component of the graph G is G_1 and all other components are isolated vertices, then $E(G) = E(G_1)$ and $I_R E(G) = I_R E(G_1)$.

By full analogy with the graph energy given by (1.1), the Randić energy of a graph G was defined as follows [2]

$$RE(G) = \sum_{i=1}^{n} |\rho_i|.$$

Considering the result in Lemma 2.4, Cheng and Liu [8] obtained the following relation between the Randić (normalized) incidence energy of a graph and Randić energy of its subdivision graph.

Theorem 3.2. [8] Let G be a graph with n vertices and m edges and let \widetilde{G} be its subdivision graph. Then, $I_R E(G) = \frac{\sqrt{2}}{2} RE(\widetilde{G})$.

Let α be a real number. The sum of the α th powers of the non-zero normalized Laplacian eigenvalues of a connected graph *G* was defined as [3]

$$s_{\alpha}(G) = \sum_{i=1}^{n-1} \gamma_i^{\alpha}.$$

This sum generalizes various graph invariants. For more details, see [1, 19]. For $\alpha = 1/2$, $s_{1/2}(G)$ is equal to the Laplacian incidence energy of *G*, defined by [31] (see also, [27,28])

$$LIE(G) = \sum_{i=1}^{n-1} \sqrt{\gamma_i}.$$

Recently, the sum of the α th powers of the normalized signless Laplacian eigenvalues of *G* was put forward as [5]

$$\sigma_{\alpha}(G) = \sum_{i=1}^{n} \left(\gamma_{i}^{+}\right)^{\alpha}.$$

Note that $\sigma_{1/2}(G) = I_R E(G)$, defined by (1.2). Recall from Lemma 2.11 that the normalized Laplacian and the normalized signless Laplacian eigenvalues coincide. By the fact that, the following result was given in [5].

Theorem 3.3. [5] If G is a bipartite graph, then $\sigma_{\alpha}(G)$ coincide with $s_{\alpha}(G)$. In particular, for bipartite graphs, $I_R E(G) = LIE(G)$.

4 Lower Bounds for $I_R E(G)$

Let K_n and $K_{p,q}$ (p+q=n) be the complete graph and the complete bipartite graph of order n, respectively. We now give some lower bounds on $I_R E(G)$.

Theorem 4.1. [8,14] Let G be a graph of order n with no isolated vertices. Then, $I_R E(G) \ge \sqrt{n}$ with equality if and only if $G \cong K_2$.

Theorem 4.2. [8] Let G be a graph of order n with no isolated vertices. Then,

$$I_R E(G) \ge \sqrt{\frac{2n^3}{4n-1+(-1)^n}}.$$

Equality holds if and only if n is even and G is disjoint union of $\frac{n}{2}$ paths of length 1.

Corollary 4.1. [8] Let G be a graph of order n with no isolated vertices. Then

$$I_R E(G) \ge \frac{n}{\sqrt{2}}.\tag{4.1}$$

Equality holds if and only if n is even and G is disjoint union of $\frac{n}{2}$ paths of length 1.

For a subset $E' \subseteq E$, the subgraph of G obtained by deleting the edges in E' is denoted by G - E'. If E' contains only one edge e, then G - E' is denoted by G - e.

Theorem 4.3. [14] Let G be a graph and E' be a nonempty subset of E. Then

$$I_{R}E(G) > I_{R}E(G-E').$$

When the edge subset E' contains exactly one edge, Gu et al. [14] established the following result.

Theorem 4.4. [14] Let G be a connected graph, $e = v_i v_j$ be an edge of G. Then

$$I_{R}E(G) \ge \sqrt{\frac{1}{d_{i}} + \frac{1}{d_{j}} + [I_{R}E(G-e)]^{2}}.$$

Equality holds if and only if $G \cong K_2$.

The clique number $\omega = \omega(G)$ of a graph *G* is equal to the number of vertices in a maximum clique. By the fact that $I_R E(K_n) = \sqrt{2} + \sqrt{(n-1)(n-2)}$, the following result was presented in [14].

Corollary 4.2. [14] Let G be a non-empty graph with clique number ω . Then,

$$I_R E(G) \ge \sqrt{2} + \sqrt{(\omega - 1)(\omega - 2)}$$

In particular, if G has at least one edge then $I_R E(G) \ge \sqrt{2}$.

The following relation exists between $I_R E(G)$ and Laplacian incidence energy.

Theorem 4.5. [31] Let G be a connected graph of order n. Then

$$I_{R}E(G) \geq LIE(G)$$
.

Equality holds if G is a bipartite graph [5].

Corollary 4.3. [31] Let G be a connected graph of order n with minimum degree δ and γ_1 the spectral radius of $\mathscr{L}(G)$. Then

$$I_{R}E(G) \ge n \max\left\{\gamma_{1}^{-1/2}, \sqrt{\frac{\delta}{\delta+1}}\right\}.$$
(4.2)

Remark 4.1. [31] *The lower bound* (4.2) *is stonger than the lower bound* (4.1).

Theorem 4.6. [24] *Let G* be a connected non–bipartite graph with $n \ge 3$ *vertices. Then, for any* α , $\gamma_2^+ \ge \alpha \ge 1$, *holds*

$$I_{R}E(G) > \sqrt{2} + \sqrt{\alpha} + n - 2 + \frac{1}{2}\ln\left(\frac{t(G \times K_{2})}{\alpha t(G)\prod_{i=1}^{n} d_{i}}\right).$$

Corollary 4.4. [24] Let $G, G \not\cong K_n$, be a connected non–bipartite graph with $n \ge 3$ vertices. *Then*,

$$I_{R}E(G) > \sqrt{2} + n - 1 + \frac{1}{2}\ln\left(\frac{t(G \times K_{2})}{t(G)\prod_{i=1}^{n}d_{i}}\right)$$

76

Theorem 4.7. [24] Let G be a connected bipartite graph with $n \ge 3$ vertices, m edges and t(G) spanning trees. Then, for any α , $\gamma_2^+ = \gamma_2 \ge \alpha \ge 1$, holds

$$I_{R}E(G) = LIE(G) \ge \sqrt{2} + \sqrt{\alpha} + n - 3 + \frac{1}{2}\ln\left(\frac{mt(G)}{\alpha\prod_{i=1}^{n}d_{i}}\right)$$

Equality holds if and only if $\alpha = 1$ and $G \cong K_{p,q}$, p + q = n.

Corollary 4.5. [24] *Let G be a connected bipartite graph with* $n \ge 3$ *vertices, m edges and* t(G) *spanning trees. Then,*

$$I_{R}E(G) = LIE(G) \ge \sqrt{2} + n - 2 + \frac{1}{2}\ln\left(\frac{mt(G)}{\prod_{i=1}^{n}d_{i}}\right).$$

Equality holds if and only if $G \cong K_{p,q}$, p + q = n.

It should be noted that the remaining lower bounds of this section were actually obtained in more general forms in [5, 6, 19].

Theorem 4.8. [5] Let G be a connected non-bipartite graph with $n \ge 3$ vertices. Then

$$I_{R}E(G) \ge \sqrt{2} + \sqrt{n - 2 + (n - 1)(n - 2)\left(\frac{t(G \times K_{2})}{t(G)\prod_{i=1}^{n} d_{i}}\right)^{1/(n - 1)}}$$

Equality holds if and only if $G \cong K_n$.

Theorem 4.9. [5] Let G be a connected bipartite graph with $n \ge 3$ vertices, m edges and t(G) spanning trees. Then

$$I_{R}E(G) = LIE(G) \ge \sqrt{2} + \sqrt{n - 2 + (n - 2)(n - 3)\left(\frac{mt(G)}{\prod_{i=1}^{n} d_{i}}\right)^{1/(n - 2)}}$$

Equality holds if and only if $G \cong K_{p,q}$, p + q = n.

Recall that every tree is bipartite . Furthermore, for a tree T, m = n - 1 and t(T) = 1. Then, from Theorem 4.9, it can be deduced that:

Corollary 4.6. [5] *Let* T *be a tree with* $n \ge 3$ *vertices. Then*

$$I_{R}E(T) = LIE(T) \ge \sqrt{2} + \sqrt{n - 2 + (n - 2)(n - 3)\left(\frac{n - 1}{\prod_{i=1}^{n} d_{i}}\right)^{1/(n - 2)}}.$$

Equality holds if and only if $T \cong K_{1,n-1}$.

Theorem 4.10. [5] Let G be a connected non-bipartite graph with $n \ge 3$ vertices. Then, there exists a real number $\varepsilon \ge 0$ such that

$$I_{R}E(G) \geq \sqrt{2} + (n-1) \left(\frac{t(G \times K_{2})}{t(G)\prod_{i=1}^{n} d_{i}}\right)^{1/2(n-1)} + \varepsilon.$$

Theorem 4.11. [19] Let G be a connected bipartite graph with $n \ge 3$ vertices, m edges and t (G) spanning trees. Then, there exists a real number $\varepsilon \ge 0$ such that

$$I_{R}E(G) = LIE(G) \ge \sqrt{2} + (n-2)\left(\frac{mt(G)}{\prod_{i=1}^{n} d_{i}}\right)^{1/2(n-2)} + \varepsilon.$$

Theorem 4.12. [6] Let G be a connected graph with $n \ge 3$ vertices. Then

$$I_{R}E(G) \ge \sqrt{2} + (n-2)\sqrt{\frac{n-2}{n+2R_{-1}(G)-4}}.$$
(4.3)

Equality holds if and only if $G \cong K_n$.

Remark 4.2. It is worth noting here that the lower bound (4.3) is stronger than the lower bound (4.1) for connected graphs. As can be seen in the inequality below

$$\sqrt{2} + (n-2)\sqrt{\frac{n-2}{n+2R_{-1}(G)-4}} \ge \frac{n}{\sqrt{2}}$$

that is,

$$\sqrt{\frac{2(n-2)}{n+2R_{-1}(G)-4}} \ge 1$$

this implies that

$$R_{-1}(G) \le \frac{n}{2}$$

which is true for the general Randić index $R_{-1}(G)$, see [20].

Corollary 4.7. [6] Let G be a connected graph with $n \ge 3$ vertices and minimum degree δ . Then

$$I_{R}E(G) \ge \sqrt{2} + (n-2)\sqrt{\frac{n-2}{n(1+\frac{1}{\delta})-4}}.$$

Equality holds if and only if $G \cong K_n$

5 Upper Bounds for $I_R E(G)$

In this section, we present some upper bounds on $I_R E(G)$ involving various structural graph parameters.

Theorem 5.1. [8, 14] *Let G* be a connected graph of order $n \ge 2$. Then

$$I_R E(G) \le \sqrt{2} + \sqrt{(n-1)(n-2)}$$
. (5.1)

Equality holds if and only if $G \cong K_n$.

Remark 5.1. [31] Among all graphs of order n, the empty graph has the minimum $I_R E(G)$ while the complete graph K_n reaches the maximum.

Theorem 5.2. [8] Let G, $G \ncong K_n$, be a connected graph of order $n \ge 2$. Then

$$I_R E(G) \le \sqrt{2} + 1 + \sqrt{(n-2)(n-3)}.$$
 (5.2)

Equality holds if and only if $\gamma_1^+ = 2$, $\gamma_2^+ = 1$ and $\gamma_i^+ = \frac{n-3}{n-2}$, for i = 3, ..., n.

Theorem 5.3. [14] Let G be a bipartite graph of order n with no isolated vertices. Then

$$I_R E(G) = LIE(G) \le \sqrt{2 + n - 2}.$$
 (5.3)

Equality holds if and only if G is a complete bipartite graph.

Remark 5.2. [14] Since every tree is a bipartite graph, for any tree T

$$I_R E(T) = LIE(T) \le \sqrt{2+n-2}$$

with equality if and only if $T \cong K_{1,n-1}$. Furthermore, among all trees with n vertices, the star graph $K_{1,n-1}$ is the unique graph with maximum Randić incidence energy.

Theorem 5.4. [24] Let G be a connected non–bipartite graph with $n \ge 3$ vertices. Then

$$I_{R}E(G) \le \sqrt{2} + \sqrt{\frac{n-1}{2} \left(2(n-2) - \left(\sqrt{\frac{n+2R_{-1}(G)-4}{n-2}} - \sqrt{\frac{n-2R_{-1}(G)}{n}}\right)^{2}\right)}$$

Equality holds if and only if $G \cong K_n$.

Theorem 5.5. [24] Let *G* be a connected non–bipartite graph with $n \ge 3$ vertices. Then, for any α , $\gamma_2^+ \ge \alpha \ge \sqrt{\frac{n+2R_{-1}(G)-4}{n-1}}$, holds

$$I_{R}E(G) \le \sqrt{2} + \sqrt{\alpha} + \left((n-2)^{3}(n+2R_{-1}(G)-4-\alpha^{2})\right)^{1/4}$$

Equality holds if and only if $\alpha = \frac{n-2}{n-1}$ and $G \cong K_n$.

Corollary 5.1. [24] Let G be a connected non–bipartite graph with $n \ge 3$ vertices. Then

$$I_R E(G) \le \sqrt{2} + ((n-1)^3(n+2R_{-1}(G)-4))^{1/4}.$$

Equality holds if and only if $G \cong K_n$.

Corollary 5.2. [24] Let G be a connected non–bipartite graph with $n \ge 3$ vertices and minimum degree δ . Then

$$I_R E(G) \le \sqrt{2} + \left((n-1)^3 \left(\frac{n(1+\delta)}{\delta} - 4 \right) \right)^{1/4}$$

Equality holds if and only if $G \cong K_n$.

Theorem 5.6. [24] Let G be a connected bipartite graph with $n \ge 3$ vertices. Then, for any α , $\gamma_2^+ = \gamma_2 \ge \alpha \ge \sqrt{\frac{n+2R_{-1}(G)-4}{n-2}}$, holds

$$I_R E(G) = LIE(G) \le \sqrt{2} + \sqrt{\alpha} + \left((n-3)^3 (n+2R_{-1}(G) - 4 - \alpha^2) \right)^{1/4}.$$

Equality holds if and only if $\alpha = 1$ and $G \cong K_{p,q}$, p + q = n.

Corollary 5.3. [24] *Let G be a connected bipartite graph with* $n \ge 3$ *vertices. Then*

$$I_{R}E(G) = LIE(G) \le \sqrt{2} + \left((n-2)^{3}(n+2R_{-1}(G)-4)\right)^{1/4}.$$

Equality holds if and only if $G \cong K_{p,q}$, p + q = n.

Theorem 5.7. [24] Let G be a connected non–bipartite graph with $n \ge 3$ vertices. Then, for any α , $\gamma_2^+ \ge \alpha \ge \frac{n-2}{n-1}$, holds

$$I_{\mathbb{R}}E(G) \le \sqrt{2} + \sqrt{\alpha} + \sqrt{(n-2)(n-2-\alpha)}.$$
(5.4)

Equality holds if and only if $\alpha = \frac{n-2}{n-1}$ and $G \cong K_n$.

Remark 5.3. [24] *The upper bounds* (5.1) *and* (5.2) *are, respectively, obtained from* (5.4) *for* $\alpha = \frac{n-2}{n-1}$ *and* $\alpha = 1$.

Theorem 5.8. [24] Let G be a connected bipartite graph with $n \ge 3$ vertices. Then, for any α , $\gamma_2^+ = \gamma_2 \ge \alpha \ge 1$, holds

$$I_R E(G) = LIE(G) \le \sqrt{2} + \sqrt{\alpha} + \sqrt{(n-3)(n-2-\alpha)}.$$
 (5.5)

Equality holds if and only if $\alpha = 1$ and $G \cong K_{p,q}$, p + q = n.

Remark 5.4. [24] Note that the inequality (5.3) is obtained from (5.5) for $\alpha = 1$.

It is worth mentioning that the remaining upper bounds of this section were established in more general forms in [5,6].

Theorem 5.9. [5] Let G be a connected non-bipartite graph with $n \ge 3$ vertices. Then

$$I_{R}E(G) \le \sqrt{2} + \sqrt{(n-2)^{2} + (n-1)\left(\frac{t(G \times K_{2})}{t(G)\prod_{i=1}^{n}d_{i}}\right)^{1/(n-1)}}.$$
(5.6)

Equality holds if and only if $G \cong K_n$.

Remark 5.5. [5] By using arithmetic-geometric mean inequality, it can be easily shown that the upper bound (5.6) is better than the upper bound (5.1) for connected non-bipartite graphs.

Theorem 5.10. [5] *Let G* be a connected bipartite graph with $n \ge 3$ vertices, *m* edges and t(G) spanning trees. Then

$$I_{R}E(G) = LIE(G) \le \sqrt{2} + \sqrt{(n-2)(n-3) + (n-2)\left(\frac{mt(G)}{\prod_{i=1}^{n} d_{i}}\right)^{1/(n-2)}}.$$
 (5.7)

Equality holds if and only if $G \cong K_{p,q}$, p + q = n.

Remark 5.6. [5] *From arithmetic-geometric mean inequality, it can be seen that the upper bound* (5.7) *is stronger than the upper bound* (5.3) *for connected bipartite graphs. More-over, the upper bound* (5.3) *was obtained in more general form in Theorem 3.7 of* [3].

For a tree T, m = n - 1 and t(T) = 1. The following result is obvious from (5.7).

Corollary 5.4. [5] *Let T* be a tree with $n \ge 3$ vertices. Then

$$I_{R}E(T) = LIE(T) \le \sqrt{2} + \sqrt{(n-2)(n-3) + (n-2)\left(\frac{n-1}{\prod_{i=1}^{n} d_{i}}\right)^{1/(n-2)}}.$$

Equality holds if and only if $T \cong K_{1,n-1}$.

Theorem 5.11. [6] Let G be a connected non-bipartite graph with $n \ge 3$ vertices. Then

$$I_{R}E(G) \le \sqrt{2} + \sqrt{1 - \frac{2R_{-1}(G)}{n}} + \sqrt{(n-2)\left(n - 3 + \frac{2R_{-1}(G)}{n}\right)}.$$
 (5.8)

Equality holds if and only if $G \cong K_n$.

Theorem 5.12. [6] Let G be a connected non-bipartite graph with $n \ge 3$ vertices and maximum degree Δ . Then

$$I_{R}E(G) \le \sqrt{2} + \sqrt{1 - \frac{1}{\Delta}} + \sqrt{(n-2)\left(n - 3 + \frac{1}{\Delta}\right)}.$$
 (5.9)

Equality holds if and only if $G \cong K_n$.

Remark 5.7. [6] The upper bounds (5.8) and (5.9) are better than the upper bound (5.1) for connected non-bipartite graphs. Furthermore, (5.8) is the best for $I_RE(G)$ among the mentioned upper bounds.

Theorem 5.13. [6] Let G be a connected bipartite graph with bipartition $V = X \cup Y$ and p = |X| > 1, q = |Y| > 1. If $G \cong K_{p,q}$, then $I_R E(G) = LIE(G) = \sqrt{2} + n - 2$ [14]. Otherwise,

$$I_{R}E(G) = LIE(G) \le \sqrt{2} + \sqrt{1 + \frac{1}{\sqrt{pq}}} + \sqrt{1 - \frac{1}{\sqrt{pq}}} + n - 4.$$
(5.10)

Equality holds if and only if $G \cong K_{p,q} - e$ (e is any edge in $K_{p,q}$).

Remark 5.8. [6] Notice that the upper bound (5.10) is better than the upper bound (5.3) for any connected bipartite graph $G \ (\not\cong K_{p,q})$ with bipartition $V = X \cup Y$ and p = |X| > 1, q = |Y| > 1.

Remark 5.9. [6] Among all connected bipartite graphs except complete biparite graph, $K_{p,q} - e$ has the maximum Randić (normalized) incidence energy or Laplacian incidence energy.

6 Coulson Integral Formula of $I_R E(G)$

As early as the 1940s [10], Coulson obtained the following integral formula for graph energy

$$E(G) = \frac{1}{\pi} \int_{-\infty}^{+\infty} \left[n - \frac{ix\phi'(A(G), ix)}{\phi(A(G), ix)} \right] dx$$

where $\phi(A(G), x)$ is the characteristic polynomial of the adjacency matrix A(G) of the *n*-vertex graph *G*. This fomula is known as *Coulson integral formula* in the literature. Its generalization [25] directly implies the following integral formula for Randić (normalized) incidence energy [8].

Theorem 6.1. [8] Let G be a graph of order n and $\phi(\mathscr{L}^+(G), x)$ be the characteristic polynomial of its normalized signless Laplacian matrix $\mathscr{L}^+(G)$. Then

$$I_{R}E(G) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \left[2n - \frac{ixf'(ix)}{f(ix)} \right] dx$$

where $f(x) = \phi \left(\mathscr{L}^+(G), x^2 \right)$.

The coefficient form of the characteristic polynomial of the normalized signless Laplacian matrix $\mathscr{L}^+(G)$ can be expressed as [8]

$$\phi\left(\mathscr{L}^{+}(G), x\right) = \sum_{k=0}^{n} \left(-1\right)^{k} b_{k}(G) x^{n-k}.$$
(6.1)

The another way to write the Coulson integral formula was presented in [8] as follows: **Theorem 6.2.** [8] *Let G be a graph of order n and let* $\phi(\mathcal{L}^+(G), x)$ *be of the form given by* (6.1). *Then*

$$I_{R}E(G) = \frac{1}{\pi} \int_{0}^{+\infty} \ln\left(\sum_{k=0}^{n} b_{k}(G) x^{2k}\right) \frac{dx}{x^{2}}.$$

In [8], It was also pointed out that the above result makes it possible to compare the Randić (normalized) incidence energies of two graphs.

Corollary 6.1. [8] Let G_1 and G_2 be two n-vertex graphs. If $b_k(G_1) \le b_k(G_2)$ for $0 \le k \le n$, then $I_R E(G_1) \le I_R E(G_2)$. Moreover, if a strict inequality $b_k(G_1) < b_k(G_2)$ holds for some $0 \le k \le n$, then $I_R E(G_1) < I_R E(G_2)$.

References

- M. BIANCHI, A. CORNARO, J.L. PALACIOS, A. TORRIERO, Bounding the sum of powers of normalized Laplacian eigenvalues of graphs through majorization methods, MATCH Commun. Math. Comput. Chem. 70 (2013) 707–716.
- [2] Ş. B. BOZKURT, A. D. GUNGOR, I. GUTMAN, A. S. CEVIK, Randić matrix and Randić energy, MATCH Commun. Math. Comput. Chem. 64 (1) (2010) 239–250.
- [3] Ş. B. BOZKURT, D. BOZKURT, On the sum of powers of normalized Laplacian eigenvalues of graphs, MATCH Commun. Math. Comput. Chem. 68 (2012) 917–930.
- [4] Ş. B. BOZKURT, D. BOZKURT, *On incidence energy*, MATCH Commun. Math. Comput. Chem. 72 (2014) 215-225.
- [5] Ş. B. BOZKURT ALTINDAĞ, Note on the sum of powers of normalized signless Laplacian eigenvalues of graphs, Math. Interdisc. Res. 4 (2) (2019) 171–182.
- [6] Ş. B. BOZKURT ALTINDAĞ, Sum of powers of normalized signless Laplacian eigenvalues and Randić (normalized) incidence energy of graphs, Bull. Inter. Math. Virtual Inst. 11 (2021) 135–146.
- [7] M. CAVERS, S. FALLAT, S. KIRKLAND, On the normalized Laplacian energy and general Randić index R_{-1} of graphs, Lin. Algebra Appl. 433 (2010) 172–190.
- [8] B. CHENG, B. LIU, *The normalized incidence energy of a graph*, Lin. Algebra Appl. 438 (11) (2013) 4510–4519.
- [9] F. R. K. CHUNG, Spectral Graph Theory, Am. Math. Soc. Providence, 1997.
- [10] C. A. COULSON, On the calculation of the energy in unsaturated hydrocarbon molecules, Math. Proc. Cambridge Philos. Soc. 36 (1940) 201–203.
- [11] D. CVETKOVIĆ, M. DOOB, H. SACHS, Spectra of graphs, Academic press, New York, 1980.
- [12] D. CVETKOVIĆ, S. SIMIĆ, Towards a spectral theory of graphs based on the signless Laplacian, I, Publ. Inst. Math. (Beograd) 85 (2009) 19–33.
- [13] K. C. DAS, I. GUTMAN, On incidence energy of graphs, Lin. Algebra Appl. 446 (2014) 329– 344.
- [14] R. GU, F. HUANG, X. LI, Randić incidence energy of graphs, Trans. Comb. 3 (4) (2014) 1–9.
- [15] I. GUTMAN, *The energy of a graph*, Ber. Math. Statist. Sekt. Forschungsz, Graz, 103 (1978) 1–22.
- [16] I. GUTMAN, *The energy of a graph: Old and new results*, in: A. Betten, A. Kohnert, R. Laue, A. Wassermann (Eds.), Algebraic Combinatorics and Applications, Springer–Verlag, Berlin, 2001, pp. 196–211.
- [17] I. GUTMAN, D. KIANI, M. MIRZAKHAH, On incidence energy of graphs, MATCH Commun. Math. Comput. Chem. 62 (2009) 573–580.
- [18] M. JOOYANDEH, D. KIANI, M. MIRZAKHAH, *Incidence energy of a graph*, MATCH Commun. Math. Comput. Chem. 62 (2009) 561–572.
- [19] J. LI, J. M. GUO, W. C. SHIU, Ş. B. BOZKURT ALTINDAĞ, D. BOZKURT, *Bounding the sum of powers of normalized Laplacian eigenvalues of a graph*, Appl. Math. Comput. 324 (2018) 82–92.
- [20] X. LI, Y. YANG, Sharp bounds for the general Randić index, MATCH Commun. Math. Comput. Chem. 51 (2004) 155–166.

- [21] X. LI, Y. SHI, I. GUTMAN, Graph Energy, Springer, New York, 2012.
- [22] X. LI, Z. QIN, M. WEI, I GUTMAN, M. DEHMER, Novel inequalities for generalized graph entropies-Graph energies and topological indices, Appl. Math. Comput. 259 (2015) 470–479.
- [23] M. LIU, B. LIU, On sum of powers of the signless Laplacian eigenvalues of graphs, Hacettepe J. Math. Stat. 41 (3) (2012) 527-536.
- [24] M. MATEJIĆ, Ş. B. BOZKURT ALTINDAĞ, E. MILOVANOVIĆ, I. MILOVANOVIĆ, On the Randić incidence energy of graphs, Comp. Appl. Math. 40, 209 (2021). https://doi.org/10.1007/s40314-021-01589-1.
- [25] M. MATELJEVIĆ, V. BOŽIN, I.GUTMAN, Energy of a polynomial and the Coulson integral formula, J. Math. Chem. 48 (2010) 1062–1068.
- [26] R. MERRISLaplacian matrices of graphs, A survey, Lin. Algebra Appl. 197–198 (1994) 143– 146.
- [27] E.I. MILOVANOVIĆ, M.M. MATEJIĆ, I. Ž. MILOVANOVIĆ, On the normalized Laplacian spectral radius, Laplacian incidence energy and Kemeny's constant, Linear Algebra Appl. 582 (2019) 181–196.
- [28] I. Ž. MILOVANOVIĆ, E.I. MILOVANOVIĆ, M.R. POPOVIĆ, R.M. STANKOVIĆ, Remark on the Laplacian energy like and Laplacian incidence energy invariants of graphs, Creat. Math. Inform. 24 (2015) 183–187.
- [29] V. NIKIFOROV, The energy of graphs and matrices, J. Math. Anal. Appl. 326 (2007) 1472– 1475.
- [30] L. QIAO, S. ZHANG, B. NING, J. LI, Coulson-type integral formulas for the general Laplacian energy-like invariant of graphs I, J.Math. Anal. Appl. 435 (2016) 1249–1261.
- [31] L. SHI, H. WANG, The Laplacian incidence energy of graphs, Lin. Algebra Appl. 439 (12) (2013) 4056–4062.