Remark on the upper bounds for arithmetic-geometric topological index of graphs

S. D. Stankov, M. M. Matejić, E. I. Milovanović, I. Ž. Milovanović

Abstract

In this paper two new inequalities involving upper bounds for arithmetic-geometric topological index are obtained.

Keywords: Topological indices, arithmetic-geometric index.

1 Introduction

Let $G=(V, E), V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}, E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$, be a simple connected graph of order n and size m. DEnote by $\Delta=d_{1} \geq d_{2} \geq \cdots \geq d_{n}=\delta>0, d_{i}=d\left(v_{i}\right)$, and $\Delta_{e}=$ $d\left(e_{1}\right)+2 \geq d\left(e_{2}\right)+2 \geq \cdots \geq d\left(e_{m}\right)+2=\delta_{e}>0$ the sequences of its vertex and edge degrees, respectively, given in an nonincreasing order. If vertices v_{i} and v_{j} are adjacent in G, we write $i \sim j$. As usual, $L(G)$ denotes a line graph of graph G.

Let v_{j} and v_{k} be two nonadjacent vertices in G that are both adjacent to v_{i}. Denote by $\Gamma(G)$ a class of connected graphs with the property $d_{i}=\sqrt{d_{j} d_{k}}$, or $L(G)$ is bidegreed.

A topological index, or a graph invariant, is a numerical quantity which is invariant under automorphisms of the graph. Many of them are defined as simple functions of the degrees of the vertices and edges, distances between vertices, or various graph spectra. Here we recall definitions of some vertex-degree-based indices that are of interest for the present paper.

The first Zagreb index, $M_{1}(G)$, introduced in [6], is defined as

$$
M_{1}(G)=\sum_{i=1}^{n} d_{i}^{2}
$$

In [4] it is proven that the first Zagreb index can also be expressed as

$$
M_{1}=\sum_{i \sim j}\left(d_{i}+d_{j}\right) .
$$

[^0]The second Zagreb index, $M_{2}(G)$, is defined as [7]

$$
M_{2}(G)=\sum_{i \sim j} d_{i} d_{j}
$$

and the so called general Randić index, $R_{-1}(G)$, as [2]

$$
R_{-1}(G)=\sum_{i \sim j} \frac{1}{d_{i} d_{j}}
$$

The geometric-arithmetic index, $G A(G)$ index for short, proposed in [28], is defined to be

$$
G A(G)=\sum_{i \sim j} \frac{2 \sqrt{d_{i} d_{j}}}{d_{i}+d_{j}}
$$

By analogy with $G A$ index, the arithmetic-geometric index, $A G(G)$, is defined as [25]

$$
A G(G)=\sum_{i \sim j} \frac{d_{i}+d_{j}}{2 \sqrt{d_{i} d_{j}}}
$$

More on this topological index can be found, for example, in [12, 17, 21, 24, 27].
In this paper we prove two inequalities involving upper bounds for $A G(G)$ index, and obtain many upper bounds for $A G(G)$ reported in the literature as corollaries.

2 Preliminaries

In this section we state one analytical inequality for real number sequences which will be used in the rest of the paper.

Lemma 2.1. [23] Let $x=\left(x_{i}\right), i=1,2, \ldots, n$, be a sequence of nonnegative real numbers and $a=\left(a_{i}\right), i=1,2, \ldots, n$, be positive real number sequence. Then for any $r \geq 0$ holds

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{x_{i}^{r+1}}{a_{i}^{r}} \geq \frac{\left(\sum_{i=1}^{n} x_{i}\right)^{r+1}}{\left(\sum_{i=1}^{n} a_{i}\right)^{r}} \tag{2.1}
\end{equation*}
$$

Equality holds if and only if $r=0$, or $\frac{x_{1}}{a_{1}}=\frac{x_{2}}{a_{2}}=\cdots=\frac{x_{n}}{a_{n}}$.

3 Main results

In the next theorem we establish relation between $A G(G)$ and $R_{-1}(G)$.

Theorem 3.1. Let G be a simple connected graph with $n \geq 3$ vertices and m edges. Then

$$
\begin{equation*}
A G(G) \leq \frac{1}{2} \sqrt{m\left(n\left(\Delta_{e}+\delta_{e}\right)-\Delta_{e} \delta_{e} R_{-1}(G)\right)} . \tag{3.1}
\end{equation*}
$$

Equality holds if and only if G is a regular or semiregular bipartite graph or $G \in \Gamma(G)$.
Proof. For any two adjacent vertices v_{i} and v_{j} in G we have that

$$
\left(d_{i}+d_{j}-\Delta_{e}\right)\left(d_{i}+d_{j}-\delta_{e}\right) \leq 0,
$$

i.e.

$$
\begin{equation*}
\left(d_{i}+d_{j}\right)^{2}+\delta_{e} \Delta_{e} \leq\left(\Delta_{e}+\delta_{e}\right)\left(d_{i}+d_{j}\right) \tag{3.2}
\end{equation*}
$$

After dividing the above inequality by $4 d_{i} d_{j}$ and summing over all edges in G, we get

$$
\sum_{i \sim j} \frac{\left(d_{i}+d_{j}\right)^{2}}{4 d_{i} d_{j}}+\frac{\Delta_{e} \delta_{e}}{4} \sum_{i \sim j} \frac{1}{d_{i} d_{j}} \leq \frac{\Delta_{e}+\delta_{e}}{4} \sum_{i \sim j} \frac{d_{i}+d_{j}}{d_{i} d_{j}},
$$

that is

$$
\begin{equation*}
\sum_{i \sim j} \frac{\left(d_{i}+d_{j}\right)^{2}}{4 d_{i} d_{j}} \leq \frac{1}{4}\left(n\left(\Delta_{e}+\delta_{e}\right)-\Delta_{e} \delta_{e} R_{-1}(G)\right) . \tag{3.3}
\end{equation*}
$$

On the other hand, for $r=1, x_{i}:=\frac{d_{i}+d_{j}}{2 \sqrt{d_{i} d_{j}}}, a_{i}:=1$, with summation performed over all edges in graph G, the inequality (2.1) becomes

$$
\sum_{i \sim j} \frac{\left(d_{i}+d_{j}\right)^{2}}{4 d_{i} d_{j}} \geq \frac{\left(\sum_{i \sim j} \frac{d_{i}+d_{j}}{2 \sqrt{d_{i} d_{j}}}\right)^{2}}{\sum_{i \sim j} 1}
$$

that is

$$
\begin{equation*}
\sum_{i \sim j} \frac{\left(d_{i}+d_{j}\right)^{2}}{4 d_{i} d_{j}} \geq \frac{A G(G)^{2}}{m} . \tag{3.4}
\end{equation*}
$$

Now, from (3.3) and (3.4) it follows

$$
\frac{A G(G)^{2}}{m} \leq \frac{1}{4}\left(n\left(\Delta_{e}+\delta_{e}\right)-\Delta_{e} \delta_{e} R_{-1}(G)\right),
$$

from which (3.1) is obtained.
Equality in (3.2) holds if and only if $d_{i}+d_{j} \in\left\{\Delta_{e}, \delta_{e}\right\}$ for any pair of adjacent vertices v_{i} and v_{j} in G. This means that equality in (3.2) holds if and only if $L(G)$ is regular or bidegreed graph.

Equality in (3.3) holds if and only if $\frac{d_{i}+d_{j}}{2 \sqrt{d_{i} d_{j}}}$ is constant for any pair of adjacent vertices v_{i} and v_{j} in G. Let v_{j} and v_{k} be two vertices adjacent to v_{i}. Then

$$
\frac{d_{i}+d_{j}}{\sqrt{d_{i} d_{j}}}=\frac{d_{i}+d_{k}}{\sqrt{d_{i} d_{k}}},
$$

i.e.

$$
\left(\sqrt{d_{k}}-\sqrt{d_{j}}\right)\left(d_{i}-\sqrt{d_{j} d_{k}}\right)=0
$$

If $d_{k}=d_{j}$, then equality in (3.3) holds if and only if G is regular or semiregular bipartite graph. Suppose that $d_{k} \neq d_{j}$. Then equality in (3.3) holds if and only if $d_{i}=\sqrt{d_{j} d_{k}}$. This means that equality in (3.3), and consequently in (3.1), holds if and only if G is a regular or semiregular bipartite graph or $G \in \Gamma(G)$.

Corollary 3.1. Let G be a simple connected graph with $n \geq 3$ vertices and m edges. Then

$$
\begin{equation*}
A G(G) \leq \frac{n}{4}\left(\sqrt{\frac{\Delta_{e}}{\delta_{e}}}+\sqrt{\frac{\delta_{e}}{\Delta_{e}}}\right) \sqrt{\frac{m}{R_{-1}(G)}} . \tag{3.5}
\end{equation*}
$$

Equality holds if and only if G is regular or semiregular bipartite graph or $G \in \Gamma(G)$ with even number of vertices.

Proof. Based on the arithmetic-geometric mean inequality, AM-GM (see for example [20]), according to (3.1) we have that

$$
2 \sqrt{4 m \Delta_{e} \delta_{e} R_{-1}(G) A G(G)^{2}} \leq 4 A G(G)^{2}+m \Delta_{e} \delta_{e} R_{-1}(G) \leq m n\left(\Delta_{e}+\delta_{e}\right),
$$

from which (3.5) is obtained.
Since

$$
2 \delta \leq \delta_{e} \leq d_{i}+d_{j} \leq \Delta_{e} \leq 2 \Delta,
$$

for every edge in G, with equalities holding if and only if G is regular, we have the following corollaries of Theorem 3.1.

Corollary 3.2. Let G be a simple connected graph with $n \geq 3$ vertices and m edges. Then

$$
A G(G) \leq \frac{\sqrt{2}}{2} \sqrt{m\left(n(\Delta+\delta)-2 \Delta \delta R_{-1}(G)\right)} .
$$

Equality holds if and only if G is a regular graph.
Corollary 3.3. Let G be a simple connected graph with $n \geq 3$ vertices and m edges. Then

$$
\begin{equation*}
A G(G) \leq \frac{n}{4}\left(\sqrt{\frac{\Delta}{\delta}}+\sqrt{\frac{\delta}{\Delta}}\right) \sqrt{\frac{m}{R_{-1}(G)}} \tag{3.6}
\end{equation*}
$$

Equality holds if and only if G is a regular graph.
Corollary 3.4. Let G be a simple connected graph with $n \geq 3$ vertices and m edges. Then

$$
\begin{equation*}
A G(G) \leq \frac{n}{4}\left(\sqrt{\frac{\Delta}{\delta}}+\sqrt{\frac{\delta}{\Delta}}\right) \sqrt{\frac{M_{2}(G)}{m}} . \tag{3.7}
\end{equation*}
$$

Equality holds if and only if G is regular.

Proof. From the arithmetic-harmonic mean inequality, AM-HM (see for example [20]), we get

$$
\sum_{i \sim j} d_{i} d_{j} \sum_{i \sim j} \frac{1}{d_{i} d_{j}} \geq m^{2},
$$

i.e.

$$
\begin{equation*}
\frac{m}{R_{-1}(G)} \leq \frac{M_{2}(G)}{m} \tag{3.8}
\end{equation*}
$$

From the above and (3.6) we get (3.7).
In the following theorem we prove the inequality involving an upper bound for $A G(G)$ in terms of $M_{1}(G)$ and parameter n.

Theorem 3.2. Let G be a simple connected graph with $n \geq 2$ vertices. Then

$$
\begin{equation*}
A G(G) \leq \frac{1}{2} \sqrt{n M_{1}(G)} \tag{3.9}
\end{equation*}
$$

Equality holds if and only if G is a regular or semiregular bipartite graph.
Proof. For $r=1, x_{i}:=\frac{d_{i}+d_{j}}{\sqrt{d_{i} d_{j}}}, a_{i}:=d_{i}+d_{j}$, with summation performed over all edges in graph G, the inequality (2.1) transforms into

$$
\sum_{i \sim j} \frac{\left(d_{i}+d_{j}\right)^{2}}{d_{i} d_{j}\left(d_{i}+d_{j}\right)}=\sum_{i \sim j} \frac{\left(\frac{d_{i}+d_{j}}{2 \sqrt{d_{i} d_{j}}}\right)^{2}}{\frac{1}{4}\left(d_{i}+d_{j}\right)} \geq \frac{\left(\sum_{i \sim j} \frac{d_{i}+d_{j}}{2 \sqrt{d_{i} d_{j}}}\right)^{2}}{\sum_{i \sim j} \frac{1}{4}\left(d_{i}+d_{j}\right)}
$$

that is

$$
\begin{equation*}
\sum_{i \sim j} \frac{d_{i}+d_{j}}{d_{i} d_{j}} \geq \frac{A G(G)^{2}}{\frac{1}{4} M_{1}(G)} \tag{3.10}
\end{equation*}
$$

Since

$$
\sum_{i \sim j} \frac{d_{i}+d_{j}}{d_{i} d_{j}}=\sum_{i \sim j}\left(\frac{1}{d_{i}}+\frac{1}{d_{j}}\right)=\sum_{i=1}^{n} d_{i} \cdot \frac{1}{d_{i}}=n
$$

from (3.10) it follows

$$
n \geq \frac{A G(G)^{2}}{\frac{1}{4} M_{1}(G)}
$$

from which (3.9) is obtained.
Equality in (3.10) holds if and only if $\frac{1}{\sqrt{d_{i} d_{j}}}$ is constant for any pair of adjacent vertices v_{i} and v_{j} in G. Let v_{j} and v_{k} be two vertices adjacent to v_{i}. Then

$$
\frac{1}{\sqrt{d_{i} d_{j}}}=\frac{1}{\sqrt{d_{i} d_{k}}}
$$

i.e. $d_{j}=d_{k}$. This means that equality in (3.10), and therefore in (3.9), holds if and only if G is a regular or semiregular bipartite graph.

As mentioned, upper bound for $A G(G)$ given by (3.9) depends on $M_{1}(G)$. Since the first Zagreb index is for sure the most examined topological index in the literature (see, for example, $[1,8,9,22]$ and the literature cited therein), the inequality (3.9) enables to determine upper bounds for $A G(G)$ in terms of many different graph parameters. In the following corollaries we give some of them.

Corollary 3.5. Let G be a simple connected graph with n vertices and m edges. Then

$$
\begin{equation*}
A G(G) \leq \frac{1}{2} \sqrt{n(2 m(\Delta+\delta)-n \Delta \delta)} \tag{3.11}
\end{equation*}
$$

Equality holds if and only if G is regular or semiregular bipartite graph.
Proof. In [3] (see also [10, 11, 13, 14, 19]) it was proven that

$$
M_{1}(G) \leq 2 m(\Delta+\delta)-n \Delta \delta
$$

with equality holding if and only if $d_{i} \in\{\Delta, \delta\}$ for every $i=1,2, \ldots, n$. From the above and (3.9) we arrive at (3.11).

Corollary 3.6. Let G be a simple connected graph with $m \geq 1$ edges. Then

$$
\begin{equation*}
A G(G) \leq \frac{m}{2}\left(\sqrt{\frac{\Delta}{\delta}}+\sqrt{\frac{\delta}{\Delta}}\right) \tag{3.12}
\end{equation*}
$$

Equality holds if and only if G is a regular or biregular graph.
Proof. In [15] (see also [5, 11, 26]) it was proven that

$$
M_{1}(G) \leq \frac{m^{2}}{n}\left(\sqrt{\frac{\Delta}{\delta}}+\sqrt{\frac{\delta}{\Delta}}\right)^{2}
$$

From the above and (3.9) we arrive at (3.12).
The inequality (3.12) was proven in [17] (see also [24]).
Since

$$
M_{1}(G) \leq m \Delta_{e} \leq 2 m \Delta \leq n \Delta^{2} \leq n(n-1)^{2}
$$

we have the following corollary of Theorem 3.2.
Corollary 3.7. Let G be a simple connected graph with $n \geq 2$ vertices and m edges. Then

$$
\begin{equation*}
A G(G) \leq \frac{1}{2} \sqrt{n m \Delta_{e}} \leq \frac{1}{2} \sqrt{2 n m \Delta} \leq \frac{n \Delta}{2} \leq \frac{n(n-1)}{2} \tag{3.13}
\end{equation*}
$$

The last two inequalities in (3.13) were proven in [27].

Corollary 3.8. Let G be a simple connected graph with $n \geq 2$ vertices and m edges. Then

$$
\begin{equation*}
A G(G) \leq \frac{1}{2} \sqrt{4 m^{2}+n^{2} \alpha(n)(\Delta-\delta)^{2}} \tag{3.14}
\end{equation*}
$$

where

$$
\alpha(n)=\frac{1}{4}\left(1-\frac{1+(-1)^{n+1}}{2 n^{2}}\right) .
$$

Equality holds if and only if G is a regular graph.
Proof. In [18] the following inequality was proven

$$
M_{1}(G) \leq \frac{4 m^{2}}{n}+n \alpha(n)(\Delta-\delta)^{2} .
$$

From the above and (3.9) we obtain (3.14).
Remark 3.1. Since $\alpha(n) \leq \frac{1}{4}$ for every n, we have that

$$
M_{1}(G) \leq \frac{4 m^{2}}{n}+\frac{n}{4}(\Delta-\delta)^{2}
$$

which was proven in [5]. According to this, it follows

$$
A G(G) \leq \frac{1}{2} \sqrt{4 m^{2}+\frac{n^{2}}{4}(\Delta-\delta)^{2}}
$$

Corollary 3.9. Let T be a tree with $n \geq 2$ vertices. Then

$$
\begin{equation*}
A G(T) \leq \frac{1}{2} \sqrt{n(2(n-1)+(n-2) \Delta)} \tag{3.15}
\end{equation*}
$$

Equality holds if and only if $T \cong K_{1, n-1}$.
Proof. In [16] the following inequality was proven

$$
M_{1}(T) \leq 2(n-1)+(n-2) \Delta
$$

From the above and (3.9) we arrive at (3.15).
Since $\Delta \leq n-1$, we have the following corollary.
Corollary 3.10. Let T be a tree with $n \geq 2$ vertices. Then

$$
\begin{equation*}
A G(T) \leq \frac{n \sqrt{n-1}}{2} \tag{3.16}
\end{equation*}
$$

Equality holds if and only if $T \cong K_{1, n-1}$.
The inequality (3.16) was proven in [27].

Acknowledgement

This work was supported by the Serbian Ministry for Education, Science and Technological development.

References

[1] B. Borovićanin, K. C. Das, B. Furtula, I. Gutman, Bounds for Zagreb indices, MATCH Commun. Math. Comput. Chem. 78 (2017) 17-100.
[2] M. Cavers, S. Fallat, S. Kirkland, On the normalized Laplacian energy and general Randić index R_{-1} of graphs, Lin. Algebra Appl. 433(1) (2010) 172-190.
[3] K. C. DAS, Maximizing the sum of the squares of the degrees of a graph, Discrete Math. 285 (2004) 57-66.
[4] T. Došlić, B. Furtula, A. Graovac, I. Gutman, S. Moradi, Z. Yarahmadi, On vertex-degree-based molecular structure descriptors, MATCH Commun. Math. Comput. Chem. 66 (2011) 613-626.
[5] G. H. Fath-TABAR, Old and new Zagreb indices of graphs, MATCH Commun. Math. Comput. Chem. 65 (2011) 79-84.
[6] I. Gutman, N. Trinaistić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538.
[7] I. Gutman, B. Ruščić, N. Trinajstić, C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399-3405.
[8] I. Gutman, K. C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004) 83-92.
[9] I. Gutman, E. Milovanović, I. Milovanović, Beyond the Zagreb indices, AKCE Int. J. Graph Comb. 17(1) (2020) 74-85.
[10] S. Hosamani, B. Basavangoud, New upper bounds for the first Zagreb index, MATCH Commun. Math. Comput. Chem. 74 (2015) 173-182.
[11] A. Ilić, M. Ilić, B. Liu, On the upper bounds for the first Zagreb index, Kragujevac J. Math. 35(1) (2011) 173-182.
[12] Ž. KoviJanić Vukićević, S. Vujošević, G. Popivoda, Unicyclic graphs with extremal values of arithmetic-geometric index, Discr. Appl. Math. 302 (2021) 67-75.
[13] J. Li, W. C. Shiu, A. Chong, On the Laplacian Estrada index of a graph, Appl. Anal. Discr. Math. 3 (2009) 147-156.
[14] X. Li, H. Zhao, Trees with the first smallest and largest genaralized topological indices, MATCH Commun. Math. Comput. Chem. 50 (2005) 57-62.
[15] M. Liu, B. Liu, New sharp upper bounds for the first Zagreb index, MATCH Commun. Math. Comput. Chem. 62 (2009) 689-698.
[16] M. Matejić, E. Milovanović, I. Milovanović, R. Khoeilar, a note on the first Za greb index and coindex of graphs, Commun. Comb. Optim. 6(1) (2021) 41-51.
[17] I. Ž. Milovanović, M. M. Matejić, E. I. Milovanović, Upper bounds for arithmeticgeometric index of graphs, Sci. Pub. State Univ. Novi Pazar, Ser A: Appl. Math. Inform. Mech. 10(1) (2018) 49-54.
[18] E. I. Milovanović, I. Ž. Milovanović, Sharp bounds for the first Zagreb index and first Zagreb coindex, Miskolc Math. Notes 16(2) (2015) 1017-1024.
[19] I. Ž. Milovanović, V. M. Ćirić, I. Z. Milentijević, E. I. Milovanović, On some spectral vertex and edge degree-based graph invariants, MATCH Commun. Math. Comput. Chem. 77 (2017) 177-188.
[20] D. S. MitrinOVić, P. M. Vasić, Analytic inequalities, Springer Verlag, Berlin-HeidelbergNew York, 1970.
[21] E. D. Molina, J. M. Rodriguez, J. L. Sanchez, J. M. Sigarreta, Some properties of the arithmetic-geometric index, Symmetry 13(5) (2021) 857.
[22] S. Nikolić, G. Kovačević, A. Miličević, N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta 76 (2003) 113-124.
[23] J. Radon, Über die absolut additiven Mengenfunktionen, Wiener Sitzungsber. 122 (1913) 1295-1438.
[24] J. M. Rodriguez, J. L. Sanchez, J. M. Sigarreta, E. Toaris, Bounds on the arithmetic-geometric index, Symmetry 13(4) (2021) 689.
[25] V. S. Shegehalli, R. Kanabur, Arithmetic-geometric indices of path graph, J. Comput. Math. Sci. 6(1) (2015) 19-24.
[26] G. Tion, T. Huang, S. Cui, Bounds of the algebraic connectivity of graphs, Adv. Math. 41(2) (2012) 217-224.
[27] S. Vujošević, G. Popivoda, Ž. Kovijanić Vukićević, B. Furtula, R. Škrekovski, Arithmetic-geometric index and its relations with geometric-arithmetic index, Appl. Math. Comput. 391 (2021) 125706.
[28] D. Vukičević, B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem. 46 (2009) 1369-1376.

[^0]: Manuscript received July 21, 2021; accepted October 12, 2021.
 S. D. Stankov, M. M. Matejić, E. I. Milovanović, I. Ž. Milovanović are with the Faculty of Electronic Engineering, Niš, Serbia; S. B. Bozkurt Altindağ is with the Konya, Turkey.

