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Remark on the Irregularity of Graphs

S. Stankov, E. Dolićanin, M. Matejić, E. Milovanović, I. Milovanović

Abstract: Let G = (V,E), V = {v1,v2, . . . ,vn}, E = {e1,e2, . . . ,em}, be a simple connected
graph with the vertex degree sequence ∆ = d1 ≥ d2 ≥ ·· · ≥ dn = δ > 0, di = d(vi). The zeroth–
order general Randić index, 0Rα(G), of a connected graph G, is defined as 0Rα(G) = ∑n

i=1 dα
i .

A linear combination of 0Rα(G) of the form irr(α)(G) = 0Rα+1(G)− 2m
n

0
Rα(G), α ≥ 0, can

be considered as an irregularity measure of a graph since irr(α)(G) = 0 if and only if G is a
regular graph, and irr(α)(G) > 0 otherwise. In this paper we consider a linear combination
irr(α)(G)− 2m

n irr(α−1)(G), for α ≥ 1, which can be also considered as irregularity measure of
graph, and determine its bounds.
Keywords: Topological indices, irregularity (of a graph).

1 Introduction

Let G = (V,E), V = {v1,v2, . . . ,vn}, E = {e1,e2, . . . ,em}, be a simple connected graph with
the vertex degree sequence ∆ = d1 ≥ d2 ≥ ·· · ≥ dn = δ > 0, di = d(vi).

A topological index, or graph invariant, for a graph is a numerical quantity which is
invariant under isomorphism of the graph. The study of the mathematical aspects of the
degree-based graph invariants (also known as topological indices) is considered to be one
of the very active research areas within the field of chemical graph theory.

The first Zagreb index [1] is a vertex–degree based graph invariant defined as [2]

M1(G) =
n

∑
i=1

d2
i .

The first Zagreb index is the oldest and most extensively studied graph–based molecular
structure descriptor. Details about its applications and mathematical properties can be found
in surveys [3–7] and in the references cited therein.
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Various generalizations of the first Zagreb index have been proposed. In [8] a so called
zeroth–order general Randić index was introduced. It is defined as

0Rα(G) =
n

∑
i=1

dα
i ,

where α is an arbitrary real number. This index is also met in the literature under the names
first general Zagreb index [9], or variable first Zagreb index [10]. For some particular values
of α the following indices/values are obtained

• The modified first Zagreb index [7] is obtained for α =−2, that is
mM1(G) = 0R−2(G);

• The inverse degree index [11] is obtained for α =−1, that is ID(G) = 0R−1(G);

• For α = 0 we have 0R0(G) = n;

• For α = 1, we have 0R1(G) = ∑n
i=1 di = 2m;

• The first Zagreb index is obtained for α = 2, M1(G) = 0R2(G)

• The forgotten topological index [12] is obtained for α = 3, F(G) = 0R3(G).

A graph G is called regular if all its vertices have the same degree. Any mapping that
associates a real number IM(G) to a graph G, satisfying the condition IM(G) = 0 if and
only if G is regular, and IM(G)> 0 otherwise, can be used as an irregularity measure. On
various irregularity measures the reader can refer to [13–21].

2 Preliminaries

In [14] it was proven that for any real α ≥ 0 holds

0Rα+1(G)≥ 2m
n

0Rα(G) , (2.1)

with equality if and only if α = 0, or G is regular. When α < 0 the sense of inequality (2.1)
reverses, that is

0Rα(G)≥ n
2m

0Rα+1(G) . (2.2)

From the inequality (2.1) for α > 0, a number of irregularity measures can be derived:

irr(α)(G) = 0Rα+1(G)− 2m
n

0Rα(G) . (2.3)

Thus, for α = 1, we obtain the well known Edwards irregularity measure [13, 20, 23]:

irr(1)(G) = M1(G)− 4m2

n
. (2.4)
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This irregularity measure is closely related to the irregularity measure introduced by Bell
[14], and defined as

irrB(G) =
1
n

n

∑
i=1

(
di −

2m
n

)2

.

Namely, the following is valid [13]:

irr(1)(G) = n · irrB(G) .

In [14] the following inequality was proven

1
2
(∆−δ )2 ≤ irr(1)(G)≤ nα(n)(∆−δ )2 , (2.5)

where

α(n) =
1
4

(
1− 1+(−1)n+1

2n2

)
.

From the inequality (2.2) for α < 0, one can derive the following family of irregularity
measures

irr(α)(G) = 0Rα(G)− n
2m

0Rα+1(G) . (2.6)

Here we are interested for the irregularity measure obtained from (2.6) for the case
α =−1, that is

irr(−1)(G) = ID(G)− n2

2m
. (2.7)

In [25] the following inequalities were proven

1
∆+δ

(√
∆
δ
−
√

δ
∆

)2

≤ irr(−1)(G)≤ n(n−1)
4m

(√
∆
δ
−
√

δ
∆

)2

. (2.8)

In [26] it was proven that for any real α ≥ 0 holds

0Rα+1(G)≥ (2m)α+1

nα . (2.9)

It is not difficult to observe that the above inequality also holds when α ≤ −1, and that
when −1 ≤ α ≤ 0 the opposite inequality is valid. Equality in (2.9) holds if and only if
either α =−1, or α = 0, or G is a regular graph.

For α ≤ −1 or α ≥ 0, from the inequality (2.9) one can derive a family of irregularity
measures of the form

irrα(G) = 0Rα+1(G)− (2m)α+1

nα . (2.10)

It is not difficult to observe that for α = 1 (2.10) coincides with (2.4), and for α = −2 it
coincides with (2.7), that is that the following is valid

irr(1)(G) = irr1(G) and irr(−1)(G) = irr−2(G) .
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Particulary interesting for us are irregularity measures obtained from (2.10) for α =−3
and α = 2, that is

irr−3(G) = mM1(G)− n3

4m2 and irr2(G) = F(G)− 8m3

n2 . (2.11)

In this paper we consider bounds of the expression

irr(α)(G)− 2m
n

irr(α−1)(G) , (2.12)

where α is an arbitrary real number. When α ≥ 1 the expression (2.12) can be considered as
an irregularity measure. New bounds for topological indices M1(G) and F(G) are obtained
as special cases.

3 Main results

First we recall one inequality for real number sequences that will be frequently used later
in this paper.

Lemma 3.1. [27] Let p = (pi), i = 1,2, . . . ,n, be a sequence of non negative real numbers
and a = (ai), i = 1,2, . . . ,n, a sequence of positive real numbers. Then, for any real r, r ≤ 0
or r ≥ 1, we have that (

n

∑
i=1

pi

)r−1 n

∑
i=1

piar
i ≥

(
n

∑
i=1

piai

)r

. (3.1)

When 0 ≤ r ≤ 1, the opposite inequality is valid. Equality holds if and only if either r = 0,
or r = 1, or a1 = a2 = · · ·= an, or p1 = · · ·= pt = 0 and at+1 = · · ·= an, or a1 = · · ·= at

and pt+1 = · · ·= pn = 0, for some t, 1 ≤ t ≤ n−1.

More on the above inequality can be found in [28, 29].

Theorem 3.1. Let G be a connected irregular graph with n ≥ 3 vertices and m edges. Then,
for any real α , α ≤ 0 or α ≥ 1, we have that

irr(α−1)(G)− 2m
n

irr(α−2)(G)≥
4
(m

n

)α+1 irr−2(G)α(m
n irr−3(G)− irr−2(G)

)α−1 . (3.2)

When 0 ≤ α ≤ 1 the opposite inequality is valid. Equality holds if and only if α = 0 or
α = 1.

Proof. For r = α , α ≤ 0 or α ≥ 1, pi =
(di− 2m

n )
2

d2
i

, ai = di, i = 1,2, . . . ,n, the inequality (3.1)
becomes (

n

∑
i=1

(
di − 2m

n

)2

d2
i

)α−1
n

∑
i=1

(
di −

2m
n

)2

dα−2
i ≥

(
n

∑
i=1

(
di − 2m

n

)2

di

)α

. (3.3)
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On the other hand, the following identities are valid

n

∑
i=1

(
di − 2m

n

)2

d2
i

=
n

∑
i=1

(
1− 4m

n
1
di
+

4m2

n2
1
d2

i

)
=

= n− 4m
n

ID(G)+
4m2

n2
mM1(G) =

= 2n− 4m
n

ID(G)+
4m2

n2
mM1(G)−n =

=
4m2

n2

(
mM1(G)− n3

4m2

)
− 4m

n

(
ID(G)− n2

2m

)
.

From the above identity and inequalities (2.7) and (2.11), we obtain

n

∑
i=1

(
di − 2m

n

)2

d2
i

=
4m
n

(m
n

irr−3(G)− irr−2(G)
)
. (3.4)

Since
n

∑
i=1

(
di −

2m
n

)2

dα−2
i =

n

∑
i=1

(
dα

i − 4m
n

dα−1
i +

4m2

n2 dα−2
i

)
=

= 0Rα(G)− 4m
n

0Rα−1(G)+
4m2

n2
0Rα−2(G) =

= 0Rα(G)− 2m
n

0Rα−1(G)− 2m
n

(
0Rα−1(G)− 2m

n
0Rα−2(G)

)
=

= irr(α−1)(G)− 2m
n

irr(α−2)(G) ,

(3.5)

and
n

∑
i=1

(
di − 2m

n

)2

di
=

n

∑
i=1

(
di −

4m
n

+
4m2

n2
1
di

)
=

= 2m−4m+
4m2

n2 ID(G) =
4m2

n2

(
ID(G)− n2

2m

)
=

4m2

n2 irr−2(G) ,

(3.6)

from identities (3.4), (3.5), (3.6) and inequality (3.3) we obtain(
4m
n

)α−1(m
n

irr−3(G)− irr−2(G)
)α−1

(
irr(α−1)(G)− 2m

n
irr(α−2)(G)

)
≥

≥
(

4m2

n2

)α

irr−2(G)α .

Since G is irregular, we have that irr−2(G) > 0 and m
n irr−3(G)− irr−2(G) > 0, from the

above inequality follows (3.2).
The case when 0≤α ≤ 1 can be proved similarly. Since G is irregular, equality in (3.3),

and consequently in (3.2), holds if and only if α = 0 or α = 1.
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Corollary 3.1. Let G be a connected irregular graph with n ≥ 3 vertices and m edges. Then
we have

M1(G)≥ 4m2

n
+

4
(m

n

)3 irr−2(G)2

m
n irr−3(G)− irr−2(G)

. (3.7)

Proof. For α = 2 the inequality (3.2) becomes

irr(1)(G)− 2m
n

irr(0)(G)≥
4
(m

n

)3 irr−2(G)2

m
n irr−3(G)− irr−2(G)

. (3.8)

Since
irr(0)(G) = 0R1(G)− 2m

n
0R0(G) = 2m−2m = 0 ,

and having in mind identity (2.4) and inequality (3.8), we arrive at (3.7).

Remark 3.1. The inequality (3.7) is stronger than

M1(G)≥ 4m2

n
+

4
(m

n

)2 irr−2(G)2

irr−3(G)
,

which was proven in [30].

Corollary 3.2. Let G be a connected irregular graph with n ≥ 3 vertices and m edges. Then
we have

F(G)≥ 4m
n

M1(G)− 8m3

n2 +
4
(m

n

)4 irr−2(G)3(m
n irr−3(G)− irr−2(G)

)2 .

Corollary 3.3. Let G be a connected graph with n ≥ 2 vertices and m edges. Then

F(G)− 8m3

n2 ≥ 4m
n

(
M1(G)− 4m2

n

)
,

F(G) ≥ 2m
n

M1(G) , (3.9)

F(G) ≥ 8m3

n2 . (3.10)

Equalities hold if and only if G is regular.

Remark 3.2. The inequality (3.9) was proven in [31], whereas (3.10) in [9] (see also [26]).

Corollary 3.4. Let U, U �Cn, be a connected unicyclic graph with n ≥ 4 vertices. Then

M1(U)≥ 4n+
4irr−2(U)2

irr−3(U)− irr−2(U)
, (3.11)

and

F(U)≥ 4M1(U)−8n+
4irr−2(U)3(

irr−3(U)− irr−2(U)
)2 . (3.12)
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Remark 3.3. When U, U � Cn, is connected unicyclic graph with n ≥ 4, the inequality
(3.11) is stronger than

M1(U)≥ 4n ,

which was proven in [32], whereas the inequality (3.12) is stronger than

F(U)≥ 4M1(U)−8n .

The proof of the next theorem is analogous to that of Theorem 3.1, hence omitted.

Theorem 3.2. Let G be a connected irregular graph with n ≥ 3 vertices and m edges. Then,
for any real α , α ≤ 0 or α ≥ 1, we have that

irr(α)(G)− 2m
n

irr(α−1)(G)≥ n2α−2irr1(G)α

(2m)2α−2irr−2(G)α−1 . (3.13)

When 0 ≤ α ≤ 1, the opposite inequality is valid. Equality holds if and only if α = 0 or
α = 1.

Corollary 3.5. Let G be a connected graph with n ≥ 2 vertices and m edges. Then for any
real α > 1, holds

irr(α)(G)− 2m
n

irr(α−1)(G)≥ nα−1(∆−δ )2(∆δ )α−1

2αmα−1(n−1)α−1 .

Equality holds if and only if G is regular.

Proof. The required result immediately follows from (3.13), left–hand side of (2.5) and
right–hand side of (2.8).
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[3] A. ALI, I. GUTMAN, E. MILOVANOVIĆ, I. MILOVANOVIĆ, Sum of powers of the degrees
of graphs: extremal results and bounds, MATCH Commun. Math. Comput. Chem. 80 (2018)
5–84.
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[29] D. S. MITRINOVIĆ, J. E. PEČARIĆ, A. M. FINK, Inequalities involving functions and their
integrals and derivatives, Kluwer Academic Publishers, Dordrecht–Boston–London, 1991.
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