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The Inner Aggregation Newton’s Method for Solving Nonlinear
Equations

Nebojša M. Ralević, Dejan Ćebić, Bratislav Iričanin

Abstract: This paper deals with the new variants of Newton’s method based on aggregation
functions for finding simple real roots of nonlinear equations. Unlike some well-known two-
step modifications of Newton’s method based on various means, the presented methods use
the same means in a different manner to achieve the third convergence order. A new general
iterative scheme is analyzed in details and the theoretical results are verified on several test
examples from real-life and literature.
Keywords: Newton’s method, aggregation function, order of convergence

1 Introduction

We consider the problem of numerical determination of an exact root α of nonlinear
equation

f (x) = 0, f : I → R , (1.1)

where I is some open interval in R, while α ∈ R is the simple root, i.e. f (α) = 0 and
f ′(α) ̸= 0. In general, it is hard or even impossible to find the exact root α analytically, so
numerical iterative methods are frequently used to find the root by creating a sequence of
approximations {xn} that tends towards α . If there exist finite C ̸= 0 and q ≥ 1 such that

lim
n→∞

xn+1 −α
(xn −α)q =C, (1.2)

then the order of convergence of the sequence {xn} is equal q, and C is known as the
asymptotic error constant. For en = xn −α, the expression (1.2) can be rewritten as

en+1 =Ceq
n +O(eq+1

n )
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which is called the error equation.
Probably the best known root-finding iterative method is Newton’s method (shortly N

method) given by

xn+1 = xn −
f (xn)

f ′(xn)
, n = 0,1, . . . (1.3)

It is quadratically convergent to simple root if the initial approximation is sufficiently close
to α. The corresponding error equation has a form

en+1 =
f ′′(α)

2 f ′(α)
· e2

n +O(e3
n).

There is a vast number of multistep iterative methods with the Newton’s step as the first
step. Those methods have been designed with the aim of increasing the efficiency and the
convergence order of method (1.3). For example, Weerakoon and Fernando [17] established
a two-point iterative scheme

x̃n = xn −
f (xn)

f ′(xn)
,

xn+1 = xn −
f (xn)

1
2( f ′(xn)+ f ′(x̃n))

. (1.4)

This method uses the arithmetic mean of f ′(xn) and f ′(x̃n) in the second step that provides
the third convergence order. Özban [12], Lukić and Ralević [10], Ralević and Lukić [14]
have replaced the arithmetic mean by harmonic, geometric and root-power means, respec-
tively, to get additional third-order methods. These types of methods are also known as the
mean-based methods [1–3, 5, 6].

Recently, Paunović, Ćebić and Ralević [13] have considered a more generalized version
of the mean-based third-order methods, defined by

x̃n = xn −
f (xn)

f ′(xn)
,

xn+1 = xn −
f (xn)

A( f ′(xn), f ′(x̃n))
, (1.5)

where A(·, ·) is an aggregation function. The method is called the external aggregation
Newton’s method. Contrary to this approach, in order to construct a new family of third-
order methods, we use the aggregation function with different arguments (namely, xn and
x̃n instead of f ′(xn) and f ′(x̃n)) in the second step of iterative scheme.

A brief recall of the (quasi) aggregation functions is given in the next section. The
new family of methods is described in Section 3 with corresponding theoretical analysis.
Section 4 is devoted to the numerical examples and concluding remarks.
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2 A Quasi Aggregation Function

In this section we present a brief recall of definitions, examples and properties of ag-
gregation functions. Let I be interval real number.

Definition 1. An n−ary aggregation function is a function A[n] : In → I such that

i) A[n](x1, ...,xn)≤ A[n](y1, ...,yn) whenever xi ≤ yi for all i ∈ {1, ...,n} (A is monotoni-
cally increasing function in all its arguments).

ii) inf
x∈In

A[n](x) = inf I and sup
x∈In

A[n](x) = sup I, x = (x1, ...,xn) (boundary condition).

An aggregation function is a function A :
∪

n∈N
In → I such that for n = 1 holds A(x) = x,

for all x ∈ I, whose restriction is A|In = A[n], for any n ∈ N.

For aggregation function is required to comply with additional features such as

iii) A[n](x,x, ...,x) = x for all x ∈ I (A[n] is idempotent function).

iv) A[n](x1, ...,xn) = A[n](xp1 , ...,xpn) for any permutation (p1, ..., pn) of set {1, ...,n}
(A[n] is symmetric function in all its arguments).

v) A[n] is continuous function.

vi) A[n] ∈ Cℓ(I◦) (The function A[n] has continuous derivatives up to the order ℓ in all
variables).

Remark 1. It is customary to take the I = [0,1]. In this case boundary condition reduces
to A(0, ...,0) = 0 and A(1, ...,1) = 1.

Here are some examples that will be used in our research, in the case n = 2, when the
aggregation function is defined in the following way:

Arithmetic mean
A(a1,a2) =

a1 +a2

2
.

Harmonic mean
H(a1,a2) =

2
1
a1
+ 1

a2

.

Geometric mean
G(a1,a2) =

√
a1a2.

Root-power means

M2(a1,a2) =
(ap

1 +ap
2

2

)1/p
, (p ̸= 0).
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Marginal, i.e. boundary members of these classes are M0 = G = Mloga, which is the
geometric mean, while M∞ =max and M−∞ =min which are not in class of quasi-arithmetic
means. For p = 2 and p = 3 we have:

Quadratic mean

Q(a1,a2) =

√
a2

1 +a2
2

2
.

Cubic mean

C(a1,a2) =
3

√
a3

1 +a3
2

2
.

Contraharmonic mean

CH(a1,a2) =
a2

1 +a2
2

a1 +a2
.

Heinz means

Zp(a,b) =
apb1−p +a1−pbp

2
, (0 6 p 6 1

2
).

Generalized Heron means

Hp(a1,a2) =
(ap

1 +(a1a2)
p/2 +ap

2
3

)1/p
, (p ̸= 0).

Symmetric means

Qp(a1,a2) =
as

1at
2 +at

1as
2

2
,

(
s =

1+
√

p
2

, t =
1−√

p
2

)
.

Generalized Contraharmonic means

Cp(a1,a2) =
ap

1 +ap
2

ap−1
1 +ap−1

2

.

Thus, we shall present a definition, some examples and properties of aggregation func-
tions (see [4, 7, 9]).

Here we consider the aggregation functions as functions of two real variables.

Definition 2. A quasi aggregation function of class ℓ is a function A : In → I, n∈N (where
I is the interval of real numbers) such that A is idempotent, symmetric and A∈Cℓ(I◦), ℓ∈N.

Lemma 1. If A : In → I, n ∈ N is a quasi aggregation function of class ℓ, then

i) Axi(x,x, ...,x) = Ax j(x,x, ...,x), x ∈ I, i, j = 1, ...,n.



The Inner Aggregation Newton’s Method 33

ii) Axi(x,x, ...,x) =
1
n , x ∈ I, i, j = 1, ...,n,

where Axi denotes ∂A
∂xi

.

Proof. i) The function A is symmetric and A ∈Cℓ(I). Thus, if for example i = 1 and j = 2

∂A
∂x1

(x,x, ...,x) = lim
h→0

A(x+h,x, ...,x)−A(x,x, ...,x)
h

= lim
h→0

A(x,x+h, ...,x)−A(x,x, ...,x)
h

=
∂A
∂x2

(x,x, ...,x).

ii) Differentiating the equality A(x,x, ...,x) = x, x ∈ I, we obtain

Ax1(x,x, ...,x) ·1+Ax2(x,x, ...,x) ·1+ ...+Axn(x,x, ...,x) ·1 = 1,

i.e. Axi(x,x, ...,x) =
1
n .

Note that, for n = 2, Ax(x,x) = Ay(x,x) = 1
2 .

Lemma 2. If A :
∪

n∈N
In → I is a quasi aggregation function of class ℓ, then holds:

i) Ax(x,y) = Ay(y,x);

ii) Axx(x,y) = Ayy(y,x);

iii) Axy(x,y) = Ayx(y,x);

iv) Axy(x,y) = Axy(y,x) (Axy is symmetric function);

v) Axxy(x,y) = Ayyx(y,x);

vi) Axxx(x,y) = Ayyy(y,x).

Proof. i) Ax(x,y) = lim
h→0

A(x+h,y)−A(x,y)
h = lim

h→0

A(y,x+h)−A(y,x)
h = Ay(y,x).

ii) Axx(x,y) = lim
h→0

Ax(x+h,y)−Ax(x,y)
h = lim

h→0

Ay(y,x+h)−Ay(y,x)
h = Ayy(y,x).

iii) Axy(x,y) = lim
h→0

Ax(x,y+h)−Ax(x,y)
h = lim

h→0

Ay(y+h,x)−Ay(y,x)
h = Ayx(y,x).

iv) Axy and Axy are continuous function, that is Axy(u,v) = Axy(u,v):

Axy(x,y) = Ayx(y,x) = Axy(y,x).

v) Axxy(x,y) = lim
h→0

Axx(x,y+h)−Axx(x,y)
h = lim

h→0

Ayy(y+h,x)−Ayy(y,x)
h = Ayyx(y,x).

vi) Axxx(x,y) = lim
h→0

Axx(x+h,y)−Axx(x,y)
h = lim

h→0

Ayy(y,x+h)−Ayy(y,x)
h = Ayyy(y,x).
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3 Definition of the Method and Analysis of its Convergence

Let A be quasi aggregation function of class 3. Then we can define the inner aggrega-
tion Newton’s method (shortly IANM) with the following iterative scheme

x̃n = xn −
f (xn)

f ′(xn)
,

xn+1 = xn −
f (xn)

f ′(A(xn, x̃n))
. (3.1)

Theorem 1. Suppose that f : I ⊆ R→ R is sufficiently differentiable function in open in-
terval I and f has a simple root α ∈ I. If x0 is chosen sufficiently close to α , then IANM
possesses cubic convergence and it satisfies the following error equation

en+1 =
(
c2Axx(α,α)− 1

4
c3
)
e3

n +o(e3
n), (3.2)

where c j =
f ( j)(α)
j! f ′(α) for j = 2,3, . . .

Proof. From Taylor’s expansion of f (x) about α , we get

f (xn) = f (α)+ f ′(α)en +
1
2! f ′′(α)e2

n +
1
3! f (3)(α)e3

n +o(e3
n)

= f ′(α)[en + c2e2
n + c3e3

n +o(e3
n)],

(3.3)

and
f ′(xn) = f ′(α)+ f ′′(α)en +

1
2! f ′′′(α)e2

n +
1
3! f (4)(α)e3

n +o(e3
n)

= f ′(α)[1+2c2en +3c3e2
n +4c4e3

n +o(e3
n)].

(3.4)

Dividing (3.3) by (3.4), we have

f (xn)

f ′(xn)
= [en + c2e2

n + c3e3
n +o(e3

n)][1+2c2en +3c3e2
n +4c4e3

n +o(e3
n)]

−1

= [en + c2e2
n + c3e3

n +o(e3
n)][1−2c2en +(4c2

2 −3c3)e2
n +o(e2

n)]

= en − c2e2
n +2(c2

2 − c3)e3
n +o(e3

n),

so, from the first step of iterative scheme, it is easy to get

x̃n = xn −
f (xn)

f ′(xn)
= α + c2e2

n +2(c3 − c2
2)e

3
n +o(e3

n). (3.5)

Hence, from (3.4) and (3.5) we have

f ′(x̃n) = f ′(α)+ f ′′(α)(x̃n −α)+o(x̃n −α)
= f ′(α)[1+2c2

2e2
n +4(c2c3 − c3

2)e
3
n +o(e3

n)].
(3.6)
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Let Ω be an open set in R2, (x0,y0)∈ Ω, and let a function A : Ω →R be of class C3(Ω).
Then from Taylor’s expansion about (x0,y0) of the function of two variables, we get

A(x,y) = A(x0,y0)+
1
1!
[Ax(x0,y0)(x− x0)+Ay(x0,y0)(y− y0)]+

+
1
2!
[Axx(x0,y0)(x− x0)

2 +2Axy(x0,y0)(x− x0)(y− y0)+Ayy(x0,y0)(y− y0)
2]+

+
1
3!
[Axxx(x0,y0)(x− x0)

3 +3Axxy(x0,y0)(x− x0)
2(y− y0)+

+ 3Axyy(x0,y0)(x− x0)(y− y0)
2 +Ayyy(x0,y0)(y− y0)

3]++o(∥(x− x0,y− y0)∥3) ,

where ∥(x− x0,y− y0)∥=
√
(x− x0)2 +(y− y0)2, and o(h) is the function for which

lim
h→0

o(h)
h = 0.

For x0 = y0 = α, x = xn and y = x̃n it is easy to obtain

A(xn, x̃n) = A(α,α)+
1
1!
[Ax(α,α)(xn −α)+Ay(α,α)(x̃n −α)]+

+
1
2!
[Axx(α,α)(xn −α)2 +2Axy(α,α)(xn −α)(x̃n −α)+Ayy(α,α)(x̃n −α)2]+

+
1
3!
[Axxx(α,α)(xn −α)3 +3Axxy(α,α)(xn −α)2(x̃n −α)+

+ 3Axyy(α,α)(xn −α)(x̃n −α)2 +Ayyy(α,α)(x̃n −α)3]+o(∥(xn −α, x̃n −α)∥3) .

Since xn −α = en, x̃n −α = c2e2
n +2(c3 − c2

2)e
3
n +o(e3

n), we have that

o(∥(xn −α, x̃n −α)∥3) = o((
√

(xn −α)2 +(x̃n −α)2)3)

= o((
√

e2
n +(c2e2

n +2(c3 − c2
2)e3

n +o(e3
n))

2)3) = o(e3
n).

From the idempotency of A, we have

A(xn, x̃n)−α = enAx(α,α)+ e2
n[Ay(α,α)c2 +

1
2

Axx(α,α)]+ e3
n[2Ay(α,α)(c3 − c2

2)+

+ Axy(α,α)c2 +
1
6

Axxx(α,α)]+o(e3
n) .

Therefore, using Taylor’s expansion of f ′ about α , we get

f ′(A(xn, x̃n))= f ′(α)+ f ′′(α)
(
A(xn, x̃n

)
−α)+ f ′′′(α)

2!

(
A(xn, x̃n)−α

)2
+ f IV (α)

3!

(
A(xn, x̃n)−

α
)3

+o(
(
A(xn, x̃n)−α

)3
)

= f ′(α)+en f ′′(α)Ax(α,α)+e2
n
[

f ′′(α)
(
Ay(α,α)c2+

1
2 Axx(α,α)

)
+ f ′′′(α)

2 A2
x(α,α)

]
+

e3
n
[

f ′′(α)
(
2Ay(α,α)(c3−c2

2)+Axy(α,α)c2+
1
6 Axxx(α,α)

)
+ f ′′′(α)

2 ·2Ax(α,α)
(
Ay(α,α)c2+

1
2 Axx(α,α)

)
+ f IV (α)

6 A3
x(α,α)

]
+o(e3

n)
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= f ′(α)
[
1+ en2c2Ax(α,α)+ e2

n
[
c2
(
2c2Ay(α,α)+Axx(α,α)

)
+3c3A2

x(α,α)
]

+ e3
n
[
2c2

(
2Ay(α,α)(c3 − c2

2)+Axy(α,α)c2 +
1
6 Axxx(α,α)

)
+6c3Ax(α,α)

(
Ay(α,α)c2 +

1
2 Axx(α,α)

)
+4c4A3

x(α,α)
]
+o(e3

n)
]
= f ′(α)(1+S).

Now, expression (3.1) can be transformed into

xn+1 = xn − f (xn)
f ′(A(xn,x̃n))

= xn − f ′(α)(en+c2e2
n+c3e3

n+o(e3
n))

f ′(α)(1+S)
= xn −

(
en + c2e2

n + c3e3
n +o(e3

n)
)
(1+S)−1

= xn −
(
en + c2e2

n + c3e3
n +o(e3

n)
)(

1−S+S2 +o(S2)
)

= xn −
(
en + c2e2

n + c3e3
n +o(e3

n)
)
·
[
1+ en

(
−2c2Ax(α,α)

)
+e2

n
(
−2c2

2Ay(α,α)− c2Axx(α,α)−3c3A2
x(α,α)+4c2

2A2
x(α,α)

)
+o(e2

n)
]

= xn − en + e2
n

(
2c2Ax(α,α)− c2

)
− e3

n

(
−2c2

2Ay(α,α)− c2Axx(α,α)

−3c3A2
x(α,α)+4c2

2Ax(α,α)−2c2
2Ax(α,α)+ c3

)
+o(e3

n)

= α + e2
nc2

(
2Ax(α,α)−1

)
+ e3

n

(
c2Axx(α,α)+3c3A2

x(α,α)

+2c2
2(Ay(α,α)− c3 −Ax(α,α))

)
+o(e3

n).

It yields

en+1 = e2
nc2

(
2Ax(α,α)−1

)
+e3

n

(
c2Axx(α,α)+3c3A2

x(α,α)− c3 +2c2
2(Ay(α,α)−Ax(α,α))

)
+o(e3

n).

On the other hand, A is also symmetric (i.e. Ax(α,α) = 1/2), and the coefficient with
e2

n vanishes. Therefore, the error equation has a form (3.2) which means that method IANM
possesses convergence order three.

Let us recall some notions from functional analysis (see e.g. [15]).

If f is a mapping of the set of X to itself, then the point x∈X is called a fixed (stationary)
point of map f if f (x) = x.

We say that a map f : X → Y of the metric space (X ,d1) in the metric space (Y,d2), is
a contraction if there exists a real number λ ∈ (0,1) such that for every x1,x2 ∈ X

d2( f (x1), f (x2))≤ λd1(x1,x2).

The number λ is called the coefficient of contraction, and f a contraction mapping.

Theorem 2. (Banach fixed point theorem [15]) If (X ,d) is a complete metric space and
f : X → X a contraction with coefficient λ , then there is one and only one fixed point x ∈ X
of the mapping f .



The Inner Aggregation Newton’s Method 37

Consider the function φ(x) = x− f (x)
g(x) , where g(x) = f ′

(
A
(
x,x− f (x)

f ′(x)

))
. IANM can be

rewritten shortly as

xn+1 = φ(xn). (3.7)

Theorem 3. Let f be a real valued and f ∈ C3(I) on the closed interval I and α is a
simple root of f belonging to the interior of I, then the function φ is a contraction in some
neighbourhood of α in which the function value is assumed to be small enough.

Proof. Clearly

φ ′(x) = 1− f ′(x)
g(x)

+
f (x)g′(x)
(g(x))2 .

If we denote ∂A
∂a (a,b) as Aa(a,b) and ∂A

∂b (a,b) as Ab(a,b), then

g′(x) = f ′′
(

A
(
x,x− f (x)

f ′(x)

))
·
(

Aa
(
x,x− f (x)

f ′(x)

)
· ∂a

∂x
+Ab

(
x,x− f (x)

f ′(x)

)
· ∂b

∂x

)
= f ′′

(
A
(
x,x− f (x)

f ′(x)

))
·
(

Aa
(
x,x− f (x)

f ′(x)

)
+Ab

(
x,x− f (x)

f ′(x)

)
· f (x) f ′′(x)
( f ′(x))2

)
.

Because f (α) = 0 and the idempotency of A, it follows g(α) = f ′(A(α,α)) = f ′(α)
and by Lemma 1

g′(α) = f ′′(A(α,α)) ·
(

Aa(α,α)+Ab(α,α) ·0
)
=

1
2

f ′′(α).

Using Taylor’s expansion of φ1(x) =
f ′(x)
g(x) at point α , we obtain

φ1(x) = φ1(α)+φ ′
1(α)(x−α)+O((x−α)2)

= f ′(α)
g(α) +

g′(α) f ′(α)−g(α) f ′′(α)
( f ′(α))2 (x−α)+O((x−α)2)

= 1− f ′′(α)
2 f ′(α)(x−α)+O((x−α)2).

(3.8)

Similarly, using Taylor’s expansion of φ2(x) =
f (x)g′(x)
(g(x))2 at point α , we obtain

φ2(x) = φ2(α)+φ ′
2(α)(x−α)+O((x−α)2)

= f (α)g′(α)
(g(α))2 + ( f ′(α)g′(α)+ f (α)g′′(α))·g2(α)− f (α)g′(α)·2g(α)(g′(α))2

g4(α)

·(x−α)+O((x−α)2)

= f ′′(α)
2 f ′(α)(x−α)+O((x−α)2).

(3.9)
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Now,

|φ ′(x)| = |1−φ1(x)+φ2(x)|

= |1−1+
f ′′(α)

2 f ′(α)
+O((x−α)2)+

f ′′(α)

2 f ′(α)
+O((x−α)2)|

= | f ′′(α)

f ′(α)
(x−α)+O((x−α)2)|

≤ | f ′′(α)

f ′(α)
| · |x−α|+ |O((x−α)2)|. (3.10)

If we use the definition of the symbol O , we assume that there exists a positive real
number M and a positive real number δ such that for all x from the neighbourhood (α −
δ ,α +δ ) of point α

O((x−α)2)≤ M|x−α|2

is satisfied.
If we introduce the label L = f ′′(α)

f ′(α) , it follows

|φ ′(x)| ≤ (L+M · |x−α|)|x−α| ≤ (L+Mδ )|x−α|.

If we choose the neighborhood (α − ε,α + ε) of the point α such that

ε = min
{

δ ,
1

2(L+Mδ )

}
, (3.11)

we get that |φ ′(x)|< 1
2 , i.e., φ is a contraction.

Furthermore, for ε defined by (3.11) and arbitrary x ∈ [α − ε,α + ε] = I, we get

|φ(x)−α|= |φ(x)−φ(α)|= |φ ′(x)| · |x−α|< |x−α|< ε,

i.e., φ(x) ∈ [α − ε,α + ε] and φ : I → I.
Thus, conditions of the Banach fixed point theorem are fulfilled. Hence, the mapping

φ has a unique fixed point in such a neighbourhood, and therefore the same follows for the
function f , then IANM ensures the sequence {xn} defined by (3.7) converges to the value
α for any initial iteration x0 sufficiently close to α .

4 Numerical Results and Conclusion

In order to verify the theoretical results from the previous section, four test examples have
been employed. The first three examples are derived from the real-life problems – Planck’s
radiation law, the electron trajectory in the air gap between two parallel plates, Van der
Wall’s equation of state (for more details see [8, 11]). The fourth example is a standard test
problem taken from [16].
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Test examples:

f1(x) = e−x −1+ x/5; x0 = 3; α = 4.9651...

f2(x) = x−0.5cosx+π/4; x0 =−1.4; α =−0.3090...

f3(x) = 0.986x3 −5.181x2 +9.067x−5.289; x0 = 2; α = 1.9298...

f4(x) =
(
1− sinx2)x2 +1

x3 +1
+ x log

(
x2 −π +1

)
− 1+π

1+
√

π3
; x0 = 1.7; α =

√
π.

The numerical results are displayed in Tables 1-4. Along with the Newton’s method
in the first row, the tables present the numerical performance of families (3.1) and (1.5) for
various aggregation functions. In fact, in order to compare the efficiency of the inner and the
external aggregation Newton’s method, each mean has been used to construct special cases
of families (1.5) and (3.1). Hence, the inner aggregation Newton’s methods are denoted by
suffix ”i”, while their external counterparts are denoted by suffix ”e”. The numerical values
are organized in four columns. ’it’ column represents the number of the iterations and ’nFe’
column relates to the number of function/derivative evaluations required to satisfy the stop-
ping criterion |xn+1 −xn|+ | f (xn+1)|< 10−7. Column |x3 −x2| shows the absolute value of
the two consecutive approximations difference. The last column displays the computational
order of convergence COC (due to [17]) calculated by

COC =
ln |(xn+1 −α)/(xn −α)|
ln |(xn −α)/(xn−1 −α)|

.

The Wolfram Mathematica programming package (ver. 11.0) has been used for per-
forming all numerical computations.

Table 1: Numerical results for f1(x)

method it nFe |x3 − x2| COC

N 4 8 0.001886 1.9504
Ai 4 12 5.692 ·10−7 3.0040
Ae 4 12 6.479 ·10−7 2.9970
Hi 3 9 3.748 ·10−13 3.5817
He 4 12 2.673 ·10−6 2.9944
Gi 3 9 4.938 ·10−8 3.4863
Ge 4 12 1.414 ·10−6 2.9958
Qi 4 12 2.126 ·10−6 3.0060
Qe 4 12 2.394 ·10−7 2.9981
Ci 4 12 4.889 ·10−6 3.0076
Ce 3 9 6.083 ·10−8 3.1845
CHi 4 12 5.250 ·10−6 3.0078
CHe 3 9 5.753 ·10−8 3.1791
Zpi (p = 1/4) 4 12 1.096 ·10−7 3.0024
Zpe (p = 1/4) 4 12 1.182 ·10−6 2.9961
Hpi (p = 1) 4 12 3.033 ·10−7 3.0033
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Table 1: Numerical results for f1(x)

method it nFe |x3 − x2| COC

Hpe (p = 1) 4 12 8.569 ·10−7 2.9966
Qpi (p = 9) 4 12 6.012 ·10−5 3.0158
Qpe (p = 9) 4 12 4.287 ·10−7 2.9999
Cpi (p = 3) 4 12 1.524 ·10−5 3.0106
Cpe (p = 3) 3 9 3.118 ·10−11 2.7593

Table 2: Numerical results for f2(x)

method it nFe |x3 − x2| COC

N 5 10 2.067 ·10−2 1.9963
Ai 4 12 1.069 ·10−5 3.0071
Ae 4 12 4.027 ·10−4 3.0424
Hi 5 15 2.338 ·10−2 3.0003
He 4 12 1.713 ·10−6 3.0082
Gi 5 15 9.398 ·10−3 3.0002
Ge 4 12 6.552 ·10−5 3.0232
Qi 4 12 2.575 ·10−4 3.0150
Qe 4 12 1.258 ·10−3 3.0628
Ci 4 12 2.444 ·10−3 2.9995
Ce 4 12 2.707 ·10−3 3.0816
CHi 5 15 1.600 ·10−2 2.9995
CHe 4 12 2.979 ·10−3 3.0856
Zpi (p = 1/4) 4 12 4.997 ·10−3 3.0398
Zpe (p = 1/4) 4 12 1.132 ·10−4 3.0277
Hpi (p = 1) 4 12 5.249 ·10−4 3.0178
Hpe (p = 1) 4 12 2.427 ·10−4 3.0357
Qpi (p = 9) 5 15 5.196 ·10−2 3.0047
Qpe (p = 9) 5 15 4.666 ·10−2 3.0109
Cpi (p = 3) 5 15 2.002 ·10−2 2.9995
Cpe (p = 3) 5 15 8.536 ·10−3 3.0013

Table 3: Numerical results for f3(x)

method it nFe |x3 − x2| COC

N 5 10 1.825 ·10−3 1.9917
Ai 4 12 5.290 ·10−6 2.9762
Ae 4 12 1.022 ·10−5 2.9690
Hi 4 12 4.514 ·10−6 2.9776
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Table 3: Numerical results for f3(x)

method it nFe |x3 − x2| COC

He 3 9 9.040 ·10−8 2.7459
Gi 4 12 4.891 ·10−6 2.9769
Ge 4 12 2.059 ·10−6 2.9841
Qi 4 12 5.711 ·10−6 2.9755
Qe 4 12 2.936 ·10−5 2.9526
Ci 4 12 6.156 ·10−6 2.9748
Ce 4 12 6.218 ·10−5 2.9356
CHi 4 12 6.156 ·10−6 2.9748
CHe 4 12 6.550 ·10−5 2.9343
Zpi (p = 1/4) 4 12 4.989 ·10−6 2.9767
Zpe (p = 1/4) 4 12 3.315 ·10−6 2.9805
Hpi (p = 1) 4 12 5.154 ·10−6 2.9764
Hpe (p = 1) 4 12 6.489 ·10−6 2.9742
Qpi (p = 9) 4 12 9.359 ·10−6 2.9704
Qpe (p = 9) 5 15 9.122 ·10−4 2.9963
Cpi (p = 3) 4 12 7.118 ·10−6 2.9733
Cpe (p = 3) 4 12 1.904 ·10−4 2.8966

Table 4: Numerical results for f4(x)

method it nFe |x3 − x2| COC

N 4 8 1.844 ·10−5 2.0002
Ai 3 9 5.470 ·10−13 2.9913
Ae 3 9 3.337 ·10−10 3.0283
Hi 3 9 4.741 ·10−12 2.9843
He 3 9 3.122 ·10−11 3.0447
Gi 3 9 1.860 ·10−12 2.9870
Ge 3 9 1.215 ·10−10 3.0342
Qi 3 9 9.309 ·10−14 2.9994
Qe 3 9 7.444 ·10−10 3.0244
Ci 3 9 3.544 ·10−15 3.0253
Ce 3 9 1.445 ·10−9 3.0213
CHi 3 9 3.535 ·10−15 3.0251
CHe 3 9 1.450 ·10−9 3.0215
Zpi (p = 1/4) 3 9 1.416 ·10−12 2.9879
Zpe (p = 1/4) 3 9 1.605 ·10−10 3.0325
Hpi (p = 1) 3 9 8.585 ·10−13 2.9897
Hpe (p = 1) 3 9 2.451 ·10−10 3.0300
Qpi (p = 9) 3 9 6.411 ·10−12 2.9660
Qpe (p = 9) 4 12 1.950 ·10−8 3.0000
Cpi (p = 3) 3 9 1.780 ·10−14 2.9525
Cpe (p = 3) 3 9 4.191 ·10−9 3.0170
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According to the all calculated COC values (all those values are very close to three), it is
obvious that the theoretical results related to the convergence order agree with the numerical
results. Note that in some cases, for the same test example, the inner aggregation variant
of the method is more efficient than its external counterpart (see, for example Hi and He,
Gi and Ge for f1), but for some other aggregation function the opposite behavior can be
detected (see, for example Qpi and Qpe, CHi and CHe for f1). In general, the efficiency
of the methods depends not only on the choice of aggregation function, but also on the
initial approximation and, naturally, on the nonlinear equation itself. Therefore, it cannot
be claimed that the inner aggregation family is better than the external aggregation methods,
and vice versa. Nevertheless, it is very clear that family (3.1) can be a valuable alternative
to the existing third-order methods.
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