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Some new upper bounds for the energy of graphs

S. B. BozKkurt Altindag, M. Mateji¢, I. Milovanovi¢, E. Milovanovié¢

Abstract: Let G = (V,E) be a graph of order n and size m. The energy of a graph is defined
as E(G) =Y}, |Ai|, where 1 > A, > --- > A, are eigenvalues of the adjacency matrix of G.
Some new upper bounds on E(G) are obtained.
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1 Introduction

Let G = (V,E), V = {vi,v2,...,vs}, be a simple connected graph with n = |V| vertices,
m = |E| edges, with vertex degree sequence dy > d, > --- > d,, d; = d(v;). Denote by
D = diag(d,,da,...,d,) the diagonal matrix of vertex degrees. The greatest, the second
greatest, the smallest and second smallest vertex degrees with be, respectively, denoted by
A=d, Ay =dr, § =d,, and & =d,_. If vertices v; and v; are adjacent in G, we will
denote it as i ~ j.

The adjacency matrix A = (a;;) of G is the (0, 1) of order n x n defined as

1, ifi~j
ajj = .
0, otherwise.

The eigenvalues of matrix A, A; > A, > --- > A,, are the (ordinary) eigenvalues of G. The
graph energy is spectrum—based graph invariant introduced in [7] as

E(G) =§M.

More on this invariant one can find in monographs [11, 15] and papers [9, 10].
The sum of the o-th powers of the degrees of a graph G

OROC(G) = Zdta’
i=1
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is known as general zeroth—order Randi¢ index [20]. It is also met under names general
first Zagreb index [12] and variable first Zagreb index [16] (see also [18]). Here we are
interested in the following special cases of ‘R (G):

* Zeroth-order connectivity index or zeroth-order Randi¢ index, R(G) ="R_; »(G)
[13].

» Inverse degree or modified total adjacency index, ID(G) ="R_;(G) [4,21].
» First Zagreb index, M| (G) =°R,(G), [5]. For more details on its properties see, for

example, [2,6,8,21].

2 Preliminaries

In this section we recall some results from the literature that are of interest for the present
paper.

Lemma 2.1. [3] Let G be a graph with n > 2 vertices. Then
EG) <Y Vd;. 2.1)
i=1

Equality holds if and only if G2 K, or G=tK U (n—2t)K;, 1 <t < 5.

The following inequalities for the sequence of real number sequences will be used in
the proofs of theorem in the present paper.

Lemma 2.2. [17] Leta= (a;),i=1,2,...,n, a1 >ay > -+ > ay,, be a sequence of positive
real numbers. Then

1 L | 2 aj ay 2
¥V =<t a2, 2.2
;a;ai_n ( +a(n)< ” 611> ) (2.2)

where

a(n):i(l—WHH).

2n?

Equality holds if and only if a; = a, = --- = a,,.
Lemma 2.3. [14] Leta = (a;), i=1,2,...,n, be a sequence of positive real numbers. Then

1/n

2
(Z\/CT:) <(n-1)Y ai+n (ch) : 2.3)
i=1 i=1 i=1

Equality holds if and only if a; = a, = --- = ay,.
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Lemma 2.4. [1]Leta= (a;) andb=(b;), i=1,2,...,n, be two sequences of non-negative
real numbers such that

0<r<a <R and 0<rn<b <R;.

Then
n n n
ny ab Z Z a(n)(Ri —r)(Ra—r2). (2.4)
i=1 i=1 =1
Equality holds if and only if ry =ay =---=a, =Ryorr, =by=---=b, = R».

Lemma 2.5. [20] Let a = (a;) and b = (b;), i = 1,2,...,n, be two sequences of non—
negative real numbers of similar monotonicity, and p = (p;), i = 1,2,...,n, sequence of
positive real numbers. Then

(2.5)

M=
M=

bz Lo

HM:

l 1

When a = (a;) and b = (b;) are of opposite monotonicity, the reverse inequality is valid in
(2.5). Equality holds if and only ifay = --- = ay, or by = --- = by,

3 Main results
In the next theorem we establish an upper bound for (G) in terms of n, A, § and detD.

Theorem 3.1. Let G be a graph of order n > 3 without isolated vertices. Then

E(G)S\/Z+x5+(n—2)<dzt6D> - 1+a(n—2) <\/> [)2 . @G0

Equality holds if and only if G = 5K>, for even n.

Proof. The inequality (2.2) can be considered in the following form

Zalz<<1—|—an 2( o \/T>>n 2)°

For a; = \/d;, ay = /Ay, a,_1 = /&, i=2,...,n— 1, the above inequality becomes

Z\sz< 1+a(n—2) \/7 </§2 (n—2)° 3.2)
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On the other hand, based on the arithmetic—geometric mean inequality (AM-GM) [20], we
have that

ol nloq = | ] - detD\ 22
i;ﬁz(n—z) (Uz\/g> = (n—2) (gd) (n—Z)( M)

3.3)

From the above and inequality (3.2) we obtain

(n—2) detD n2”21\/67i§(n_2)2 1+a(n—2) 4&_4%
& Ay

that is

n—1 ,,2
Z\/Zig(n—z)<dZ%D> Y 1+a(n—2) ,/Az ,/Az . (3.4)
i=2

The function f(x) = /x + ~ is monotone increasing for every real x > 1. Since 1 <
L < %, from (3.4) we have that

3
gmﬁ(n—2)<dZ;D> " 1+ a(n—2) (\[ \[>
that is
iﬂg\/h\/gﬂn_z)(dzté])) il FE— (f \[>

Now, from the above and (2.1) we arrive at (3.1).

Equality in (3.3) holds if and only if d, = - - - = d,,—;. Equality in (2.1) holds if and only
ifG=K,, orG=tK,U (n—2t)K;. Since G has no isolated vertices, equality in (3.1) holds
if and only if G = ”Kz, for even n. O

Corollary 3.1. Let G be a graph of order n > 3 without isolated vertices. Then

E(G )<f+f+”42(detD> i <\[ [) (3.5)

Equality holds if and only if G = 5K>, for even n.

Proof. For every n > 3 holds
oan—-2)< -

From the above and (3.1) the inequality (3.5) immediately follows. 0
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The proof of the next two theorems is analogous to that of Theorem 3.1, hence omitted.

Theorem 3.2. Let G be a graph of order n > 2 without isolated vertices. Then

E(G) <VA+(n—1) (diD>2(nll> I +a(m-1) (Q/?—Q/i)z .

Equality holds if and only if G = 5K, for even n.

Corollary 3.2. Let G be a graph of order n > 2 without isolated vertices. Then

detD\ 21 \/Zﬂ/? ’
A 0 Al

Equality holds if and only if G = 5 K>, for even n.

E(G)S\/K+n;1

Theorem 3.3. Let G be a graph of order n > 2 without isolated vertices. Then

2
E(G) < n(detD)” | 1+ a(n) ((/?- {/E) .

Equality holds if and only if G = K, for even n.

Corollary 3.3. Let G be a graph of order n > 2 without isolated vertices. Then

E(G) < Z(detp)ﬁ (</§+ {‘/i)z .

Equality holds if and only if G = 5K, for even n.

Theorem 3.4. Let G be a graph of order n > 2 and size m, without isolated vertices. Then

E(G) < min { V@m—n)(n—ID(G)) +°R(G), \/(2m~+n)(n +1D(G)) —OR(G)} . (3.6)
Equality holds if and only if G = 5Ky, for even n.

Proof. In [19] it was proven that for any real @, 0 < & < 1 holds

(2m—n)*
(n—1D(G))*"!

(2m+n)*

+°Ro-1(G), i+ ID(G))& T

Ra(G) < min { Ri1(6))

For a0 = % the above inequality becomes

_O0p

=
=
D=

OR (G)gmin{(zm—n) (n—1ID(G))* +°R_(G), (2m-+n)*(n+1D(G))

1
2
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that is
n
Y V< min{\/(Zm ) (n—ID(G)) +°R(G), \/(2m+n)(n +1D(G)) _OR(G)} .
i=1
(3.7)
Now, from the above and inequality (2.1) we obtain (3.6).
Equality in (3.7) holds if and only if d| = - -- = d,,. Equality in (2.1) holds if and only if
G =K, or G=tK,+ (n—2t)K;. Since G has no isolated vertices, equality in (3.6) holds
if and only if G = 7 K5, for even n. O
Theorem 3.5. Let G be a graph with n > 2 vertices. Then
2
E(G) < n(detD)” +n*a(n) (A% - 5%) . (3.8)

Equality holds if and only if G 2 K,, or G = 5K, for even n.

Proof. Fora; =b; =/d;, a; = b| = VA, a, =b, = V8, i= 1,2,...,n, the inequality (2.4)
becomes

< n*a(n) (A% — 5%)2 .

fva- (£

i=

—_

Since

i=1 i=1

niﬂ—(iﬁ>2zo

the above inequality becomes

2
nY Vi (Z : dl-) < na(n) (A% —6%>2. (3.9)

i=1

On the other hand, for a; = \/d;, i = 1,2,...,n, the inequality (2.3) becomes

<Zf> (n—1 Zf+n<]’[f>
that is

(Zf) (n—1 Z\fﬂ detD) (3.10)

From the above and inequality (3.9) we obtain
Y \/d; < n(detD)? +n*a(n) (A% -5
i=1

) 2
Now, from the above and (2.1) we obtain (3.8).
Equality in (3.9) holds if and only if d; = - -+ = d,,. Equality in (2.1) holds if and only if
G=K,, or G=tKU (n—2t)Ky, 1 <t < %. This implies that equality in (3.8) holds if and
only if G = K, or G = Kg, for even n. L]

i
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In the next theorem we determine an upper bound for E(G) in terms of ID(G), M;(G)
and parameters A and 9.

Theorem 3.6. Let G be a graph of order n > 3 without isolated vertices. Then

E(G)S\/K—l—\/g—l—\/(ID(G)—i—é) (M, (G) — A2 — 82). (3.11)

Equality holds if and only if G = 5K, for even n.

Proof. The inequality (2.5) can be considered in a form

n—1 n—1 n—1 n—1
Y pi Y piaibi > Y pai } pibi.
= i=2 i =

[SI[o%)

Forpi:di[_,ai:b,-:d

7,i=2,...,n— 1, the above inequality becomes

2
n—1 1 n—1 n—1
;EZd?z <22 \/cZ) , (3.12)

=2

that is
2
(ID(G) 1 1) (Mi(G) —A? - 8%) > (Z \/E—x/K—\/S>
i=1

From the above inequality we obtain

gﬂg \/K+\/g+\/<ID(G)—i—;> (M (G)— A2 — 52).

Now, from the above inequality and (2.1) we obtain (3.11).

Equality in (3.12) holds if and only if dy = d3 = --- = d,—1. Equality in (2.1) holds if
and only if G2 K,,or G=tK,U(n—2t)K;, 1 <t < 5. Since G has no isolated vertices,
the inequality (3.11) holds if and only if G = 7 K5, for even n. O

By a similar procedure the following results are proved.

Theorem 3.7. Let G be a graph of order n > 2 without isolated vertices. Then

E(G) < VA+ \/(ID(G) _ i) (Mi(G) —A%).

Equality holds if and only if G = 5K, for even n.
Theorem 3.8. Let G be a graph of order n > 2 without isolated vertices. Then
E(G) < +/ID(G)M;(G).

Equality holds if and only if G = 5K>, for even n.
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