Some new upper bounds for the energy of graphs

Ş. B. Bozkurt Altındağ, M. Matejić, I. Milovanović, E. Milovanović

Abstract

Let $G=(V, E)$ be a graph of order n and size m. The energy of a graph is defined as $E(G)=\sum_{I=1}^{n}\left|\lambda_{i}\right|$, where $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ are eigenvalues of the adjacency matrix of G. Some new upper bounds on $E(G)$ are obtained.

Keywords: Energy of a graph, topological indices.

1 Introduction

Let $G=(V, E), V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, be a simple connected graph with $n=|V|$ vertices, $m=|E|$ edges, with vertex degree sequence $d_{1} \geq d_{2} \geq \cdots \geq d_{n}, d_{i}=d\left(v_{i}\right)$. Denote by $D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ the diagonal matrix of vertex degrees. The greatest, the second greatest, the smallest and second smallest vertex degrees with be, respectively, denoted by $\Delta=d_{1}, \Delta_{2}=d_{2}, \delta=d_{n}$, and $\delta_{2}=d_{n-1}$. If vertices v_{i} and v_{j} are adjacent in G, we will denote it as $i \sim j$.

The adjacency matrix $A=\left(a_{i j}\right)$ of G is the $(0,1)$ of order $n \times n$ defined as

$$
a_{i j}= \begin{cases}1, & \text { if } i \sim j \\ 0, & \text { otherwise }\end{cases}
$$

The eigenvalues of matrix $A, \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$, are the (ordinary) eigenvalues of G. The graph energy is spectrum-based graph invariant introduced in [7] as

$$
E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|
$$

More on this invariant one can find in monographs [11,15] and papers [9, 10].
The sum of the α-th powers of the degrees of a graph G

$$
{ }^{0} R_{\alpha}(G)=\sum_{i=1}^{n} d_{i}^{\alpha}
$$

[^0]is known as general zeroth-order Randić index [20]. It is also met under names general first Zagreb index [12] and variable first Zagreb index [16] (see also [18]). Here we are interested in the following special cases of ${ }^{0} R_{\alpha}(G)$:

- Zeroth-order connectivity index or zeroth-order Randić index, ${ }^{0} R(G)={ }^{0} R_{-1 / 2}(G)$ [13].
- Inverse degree or modified total adjacency index, $I D(G)={ }^{0} R_{-1}(G)[4,21]$.
- First Zagreb index, $M_{1}(G)={ }^{0} R_{2}(G)$, [5]. For more details on its properties see, for example, [2, 6, 8, 21].

2 Preliminaries

In this section we recall some results from the literature that are of interest for the present paper.

Lemma 2.1. [3] Let G be a graph with $n \geq 2$ vertices. Then

$$
\begin{equation*}
E(G) \leq \sum_{i=1}^{n} \sqrt{d_{i}} \tag{2.1}
\end{equation*}
$$

Equality holds if and only if $G \cong \overline{K_{n}}$, or $G \cong t K_{2} \cup(n-2 t) K_{1}, 1 \leq t \leq \frac{n}{2}$.
The following inequalities for the sequence of real number sequences will be used in the proofs of theorem in the present paper.

Lemma 2.2. [17] Let $a=\left(a_{i}\right), i=1,2, \ldots, n, a_{1} \geq a_{2} \geq \cdots \geq a_{n}$, be a sequence of positive real numbers. Then

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i} \sum_{i=1}^{n} \frac{1}{a_{i}} \leq n^{2}\left(1+\alpha(n)\left(\sqrt{\frac{a_{1}}{a_{n}}}-\sqrt{\frac{a_{n}}{a_{1}}}\right)^{2}\right) \tag{2.2}
\end{equation*}
$$

where

$$
\alpha(n)=\frac{1}{4}\left(1-\frac{(-1)^{n+1}+1}{2 n^{2}}\right) .
$$

Equality holds if and only if $a_{1}=a_{2}=\cdots=a_{n}$.
Lemma 2.3. [14] Let $a=\left(a_{i}\right), i=1,2, \ldots, n$, be a sequence of positive real numbers. Then

$$
\begin{equation*}
\left(\sum_{i=1}^{n} \sqrt{a_{i}}\right)^{2} \leq(n-1) \sum_{i=1}^{n} a_{i}+n\left(\prod_{i=1}^{n} a_{i}\right)^{1 / n} \tag{2.3}
\end{equation*}
$$

Equality holds if and only if $a_{1}=a_{2}=\cdots=a_{n}$.

Lemma 2.4. [1] Let $a=\left(a_{i}\right)$ and $b=\left(b_{i}\right), i=1,2, \ldots, n$, be two sequences of non-negative real numbers such that

$$
0 \leq r_{1} \leq a_{i} \leq R_{1} \quad \text { and } \quad 0 \leq r_{2} \leq b_{i} \leq R_{2}
$$

Then

$$
\begin{equation*}
\left|n \sum_{i=1}^{n} a_{i} b_{i}-\sum_{i=1}^{n} a_{i} \sum_{i=1}^{n} b_{i}\right| \leq n^{2} \alpha(n)\left(R_{1}-r_{1}\right)\left(R_{2}-r_{2}\right) \tag{2.4}
\end{equation*}
$$

Equality holds if and only if $r_{1}=a_{1}=\cdots=a_{n}=R_{1}$ or $r_{2}=b_{1}=\cdots=b_{n}=R_{2}$.
Lemma 2.5. [20] Let $a=\left(a_{i}\right)$ and $b=\left(b_{i}\right), i=1,2, \ldots, n$, be two sequences of nonnegative real numbers of similar monotonicity, and $p=\left(p_{i}\right), i=1,2, \ldots, n$, sequence of positive real numbers. Then

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i} \sum_{i=1}^{n} p_{i} a_{i} b_{i} \geq \sum_{i=1}^{n} p_{i} a_{i} \sum_{i=1}^{n} p_{i} b_{i} \tag{2.5}
\end{equation*}
$$

When $a=\left(a_{i}\right)$ and $b=\left(b_{i}\right)$ are of opposite monotonicity, the reverse inequality $i s$ valid in (2.5). Equality holds if and only if $a_{1}=\cdots=a_{n}$, or $b_{1}=\cdots=b_{n}$.

3 Main results

In the next theorem we establish an upper bound for (G) in terms of n, Δ, δ and $\operatorname{det} D$.
Theorem 3.1. Let G be a graph of order $n \geq 3$ without isolated vertices. Then

$$
\begin{equation*}
E(G) \leq \sqrt{\Delta}+\sqrt{\delta}+(n-2)\left(\frac{\operatorname{det} D}{\Delta \delta}\right)^{\frac{1}{2(n-2)}}\left(1+\alpha(n-2)\left(\sqrt[4]{\frac{\Delta}{\delta}}-\sqrt[4]{\frac{\delta}{\Delta}}\right)^{2}\right) \tag{3.1}
\end{equation*}
$$

Equality holds if and only if $G \cong \frac{n}{2} K_{2}$, for even n.
Proof. The inequality (2.2) can be considered in the following form

$$
\sum_{i=2}^{n-1} a_{i} \sum_{i=2}^{n-1} \frac{1}{a_{i}} \leq\left(1+\alpha(n-2)\left(\sqrt{\frac{a_{2}}{a_{n-1}}}-\sqrt{\frac{a_{n-1}}{a_{2}}}\right)^{2}\right)(n-2)^{2}
$$

For $a_{i}=\sqrt{d_{i}}, a_{2}=\sqrt{\Delta_{2}}, a_{n-1}=\sqrt{\delta_{2}}, i=2, \ldots, n-1$, the above inequality becomes

$$
\begin{equation*}
\sum_{i=2}^{n-1} \sqrt{d_{i}} \sum_{i=2}^{n-1} \frac{1}{\sqrt{d_{i}}} \leq\left(1+\alpha(n-2)\left(\sqrt[4]{\frac{\Delta_{2}}{\delta_{2}}}-\sqrt[4]{\frac{\delta_{2}}{\Delta_{2}}}\right)^{2}\right)(n-2)^{2} \tag{3.2}
\end{equation*}
$$

On the other hand, based on the arithmetic-geometric mean inequality (AM-GM) [20], we have that

$$
\begin{equation*}
\sum_{i=2}^{n-1} \frac{1}{\sqrt{d_{i}}} \geq(n-2)\left(\prod_{i=2}^{n-1} \frac{1}{\sqrt{d_{i}}}\right)^{\frac{1}{n-2}}=(n-2)\left(\prod_{i=2}^{n-1} \frac{1}{d_{i}}\right)^{\frac{1}{2(n-2)}}=(n-2)\left(\frac{\operatorname{det} D}{\Delta \delta}\right)^{-\frac{1}{2(n-2)}} \tag{3.3}
\end{equation*}
$$

From the above and inequality (3.2) we obtain

$$
(n-2)\left(\frac{\operatorname{det} D}{\Delta \delta}\right)^{-\frac{1}{2(n-2)}} \sum_{i=2}^{n-1} \sqrt{d_{i}} \leq(n-2)^{2}\left(1+\alpha(n-2)\left(\sqrt[4]{\frac{\Delta_{2}}{\delta_{2}}}-\sqrt[4]{\frac{\delta_{2}}{\Delta_{2}}}\right)^{2}\right)
$$

that is

$$
\begin{equation*}
\sum_{i=2}^{n-1} \sqrt{d_{i}} \leq(n-2)\left(\frac{\operatorname{det} D}{\Delta \delta}\right)^{\frac{1}{2(n-2)}}\left(1+\alpha(n-2)\left(\sqrt{\frac{\Delta_{2}}{\delta_{2}}}+\sqrt{\frac{\delta_{2}}{\Delta_{2}}}-2\right)\right) \tag{3.4}
\end{equation*}
$$

The function $f(x)=\sqrt{x}+\frac{1}{\sqrt{x}}$ is monotone increasing for every real $x \geq 1$. Since $1 \leq$ $\frac{\Delta_{2}}{\delta_{2}} \leq \frac{\Delta}{\delta}$, from (3.4) we have that

$$
\sum_{i=2}^{n-1} \sqrt{d_{i}} \leq(n-2)\left(\frac{\operatorname{det} D}{\Delta \delta}\right)^{\frac{1}{2(n-2)}}\left(1+\alpha(n-2)\left(\sqrt[4]{\frac{\Delta}{\delta}}-\sqrt[4]{\frac{\delta}{\Delta}}\right)^{2}\right)
$$

that is

$$
\sum_{i=1}^{n} \sqrt{d_{i}} \leq \sqrt{\Delta}+\sqrt{\delta}+(n-2)\left(\frac{\operatorname{det} D}{\Delta \delta}\right)^{\frac{1}{2(n-2)}}\left(1+\alpha(n-2)\left(\sqrt[4]{\frac{\Delta}{\delta}}-\sqrt[4]{\frac{\delta}{\Delta}}\right)^{2}\right)
$$

Now, from the above and (2.1) we arrive at (3.1).
Equality in (3.3) holds if and only if $d_{2}=\cdots=d_{n-1}$. Equality in (2.1) holds if and only if $G \cong \overline{K_{n}}$, or $G \cong t K_{2} \cup(n-2 t) K_{1}$. Since G has no isolated vertices, equality in (3.1) holds if and only if $G \cong \frac{n}{2} K_{2}$, for even n.
Corollary 3.1. Let G be a graph of order $n \geq 3$ without isolated vertices. Then

$$
\begin{equation*}
E(G) \leq \sqrt{\Delta}+\sqrt{\delta}+\frac{n-2}{4}\left(\frac{\operatorname{det} D}{\Delta \delta}\right)^{\frac{1}{2(n-2)}}\left(\sqrt[4]{\frac{\Delta}{\delta}}+\sqrt[4]{\frac{\delta}{\Delta}}\right)^{2} \tag{3.5}
\end{equation*}
$$

Equality holds if and only if $G \cong \frac{n}{2} K_{2}$, for even n.
Proof. For every $n \geq 3$ holds

$$
\alpha(n-2) \leq \frac{1}{4}
$$

From the above and (3.1) the inequality (3.5) immediately follows.

The proof of the next two theorems is analogous to that of Theorem 3.1, hence omitted.
Theorem 3.2. Let G be a graph of order $n \geq 2$ without isolated vertices. Then

$$
E(G) \leq \sqrt{\Delta}+(n-1)\left(\frac{\operatorname{det} D}{\Delta}\right)^{\frac{1}{2(n-1)}}\left(1+\alpha(n-1)\left(\sqrt[4]{\frac{\Delta}{\delta}}-\sqrt[4]{\frac{\delta}{\Delta}}\right)^{2}\right)
$$

Equality holds if and only if $G \cong \frac{n}{2} K_{2}$, for even n.
Corollary 3.2. Let G be a graph of order $n \geq 2$ without isolated vertices. Then

$$
E(G) \leq \sqrt{\Delta}+\frac{n-1}{4}\left(\frac{\operatorname{det} D}{\Delta}\right)^{\frac{1}{2(n-1)}}\left(\sqrt[4]{\frac{\Delta}{\delta}}+\sqrt[4]{\frac{\delta}{\Delta}}\right)^{2}
$$

Equality holds if and only if $G \cong \frac{n}{2} K_{2}$, for even n.
Theorem 3.3. Let G be a graph of order $n \geq 2$ without isolated vertices. Then

$$
E(G) \leq n(\operatorname{det} D)^{\frac{1}{2 n}}\left(1+\alpha(n)\left(\sqrt[4]{\frac{\Delta}{\delta}}-\sqrt[4]{\frac{\delta}{\Delta}}\right)^{2}\right)
$$

Equality holds if and only if $G \cong \frac{n}{2} K_{2}$, for even n.
Corollary 3.3. Let G be a graph of order $n \geq 2$ without isolated vertices. Then

$$
E(G) \leq \frac{n}{4}(\operatorname{det} D)^{\frac{1}{2 n}}\left(\sqrt[4]{\frac{\Delta}{\delta}}+\sqrt[4]{\frac{\delta}{\Delta}}\right)^{2}
$$

Equality holds if and only if $G \cong \frac{n}{2} K_{2}$, for even n.
Theorem 3.4. Let G be a graph of order $n \geq 2$ and size m, without isolated vertices. Then

$$
\begin{equation*}
E(G) \leq \min \left\{\sqrt{(2 m-n)(n-I D(G))}+{ }^{0} R(G), \sqrt{(2 m+n)(n+I D(G))}-{ }^{0} R(G)\right\} \tag{3.6}
\end{equation*}
$$

Equality holds if and only if $G \cong \frac{n}{2} K_{2}$, for even n.
Proof. In [19] it was proven that for any real $\alpha, 0 \leq \alpha \leq 1$ holds

$$
{ }^{0} R_{\alpha}(G) \leq \min \left\{\frac{(2 m-n)^{\alpha}}{(n-I D(G))^{\alpha-1}}+{ }^{0} R_{\alpha-1}(G), \frac{(2 m+n)^{\alpha}}{(n+I D(G))^{\alpha-1}}-{ }^{0} R_{\alpha-1}(G)\right) .
$$

For $\alpha=\frac{1}{2}$, the above inequality becomes

$$
{ }^{0} R_{\frac{1}{2}}(G) \leq \min \left\{(2 m-n)^{\frac{1}{2}}(n-I D(G))^{\frac{1}{2}}+{ }^{0} R_{-\frac{1}{2}}(G),(2 m+n)^{\frac{1}{2}}(n+I D(G))^{\frac{1}{2}}-{ }^{0} R_{-\frac{1}{2}}(G)\right\},
$$

that is

$$
\begin{equation*}
\sum_{i=1}^{n} \sqrt{d_{i}} \leq \min \left\{\sqrt{(2 m-n)(n-I D(G))}+{ }^{0} R(G), \sqrt{(2 m+n)(n+I D(G))}-{ }^{0} R(G)\right\} \tag{3.7}
\end{equation*}
$$

Now, from the above and inequality (2.1) we obtain (3.6).
Equality in (3.7) holds if and only if $d_{1}=\cdots=d_{n}$. Equality in (2.1) holds if and only if $G \cong \overline{K_{n}}$, or $G \cong t K_{2}+(n-2 t) K_{1}$. Since G has no isolated vertices, equality in (3.6) holds if and only if $G \cong \frac{n}{2} K_{2}$, for even n.
Theorem 3.5. Let G be a graph with $n \geq 2$ vertices. Then

$$
\begin{equation*}
E(G) \leq n(\operatorname{det} D)^{\frac{1}{2 n}}+n^{2} \alpha(n)\left(\Delta^{\frac{1}{4}}-\delta^{\frac{1}{4}}\right)^{2} \tag{3.8}
\end{equation*}
$$

Equality holds if and only if $G \cong \overline{K_{n}}$, or $G \cong \frac{n}{2} K_{2}$, for even n.
Proof. For $a_{i}=b_{i}=\sqrt[4]{d_{i}}, a_{1}=b_{1}=\sqrt[4]{\Delta}, a_{n}=b_{n}=\sqrt[4]{\delta}, i=1,2, \ldots, n$, the inequality (2.4) becomes

$$
\left|n \sum_{i=1}^{n} \sqrt{d_{i}}-\left(\sum_{i=1}^{n} \sqrt[4]{d_{i}}\right)\right|^{2} \leq n^{2} \alpha(n)\left(\Delta^{\frac{1}{4}}-\delta^{\frac{1}{4}}\right)^{2}
$$

Since

$$
n \sum_{i=1}^{n} \sqrt{d_{i}}-\left(\sum_{i=1}^{n} \sqrt[4]{d_{i}}\right)^{2} \geq 0
$$

the above inequality becomes

$$
\begin{equation*}
n \sum_{i=1}^{n} \sqrt{d_{i}}-\left(\sum_{i=1}^{n} \sqrt[4]{d_{i}}\right)^{2} \leq n^{2} \alpha(n)\left(\Delta^{\frac{1}{4}}-\delta^{\frac{1}{4}}\right)^{2} \tag{3.9}
\end{equation*}
$$

On the other hand, for $a_{i}=\sqrt{d_{i}}, i=1,2, \ldots, n$, the inequality (2.3) becomes

$$
\left(\sum_{i=1}^{n} \sqrt[4]{d_{i}}\right)^{2} \leq(n-1) \sum_{i=1}^{n} \sqrt{d_{i}}+n\left(\prod_{i=1}^{n} \sqrt{d_{i}}\right)^{\frac{1}{n}}
$$

that is

$$
\begin{equation*}
\left(\sum_{i=1}^{n} \sqrt[4]{d_{i}}\right)^{2} \leq(n-1) \sum_{i=1}^{n} \sqrt{d_{i}}+n(\operatorname{det} D)^{\frac{1}{2 n}} \tag{3.10}
\end{equation*}
$$

From the above and inequality (3.9) we obtain

$$
\sum_{i=1}^{n} \sqrt{d_{i}} \leq n(\operatorname{det} D)^{\frac{1}{2 n}}+n^{2} \alpha(n)\left(\Delta^{\frac{1}{4}}-\delta^{\frac{1}{4}}\right)^{2}
$$

Now, from the above and (2.1) we obtain (3.8).
Equality in (3.9) holds if and only if $d_{1}=\cdots=d_{n}$. Equality in (2.1) holds if and only if $G \cong \overline{K_{n}}$, or $G \cong t K_{2} \cup(n-2 t) K_{1}, 1 \leq t \leq \frac{n}{2}$. This implies that equality in (3.8) holds if and only if $G \cong \overline{K_{n}}$, or $G \cong \frac{n}{2} K_{2}$, for even n.

In the next theorem we determine an upper bound for $E(G)$ in terms of $I D(G), M_{1}(G)$ and parameters Δ and δ.
Theorem 3.6. Let G be a graph of order $n \geq 3$ without isolated vertices. Then

$$
\begin{equation*}
E(G) \leq \sqrt{\Delta}+\sqrt{\delta}+\sqrt{\left(I D(G)-\frac{1}{\Delta}-\frac{1}{\delta}\right)\left(M_{1}(G)-\Delta^{2}-\delta^{2}\right)} . \tag{3.11}
\end{equation*}
$$

Equality holds if and only if $G \cong \frac{n}{2} K_{2}$, for even n.
Proof. The inequality (2.5) can be considered in a form

$$
\sum_{i=2}^{n-1} p_{i} \sum_{i=2}^{n-1} p_{i} a_{i} b_{i} \geq \sum_{i=2}^{n-1} p_{i} a_{i} \sum_{i=2}^{n-1} p_{i} b_{i}
$$

For $p_{i}=\frac{1}{d_{i}}, a_{i}=b_{i}=d_{i}^{\frac{3}{2}}, i=2, \ldots, n-1$, the above inequality becomes

$$
\begin{equation*}
\sum_{i=2}^{n-1} \frac{1}{d_{i}} \sum_{i=2}^{n-1} d_{i}^{2} \geq\left(\sum_{i=2}^{n-1} \sqrt{d_{i}}\right)^{2} \tag{3.12}
\end{equation*}
$$

that is

$$
\left(I D(G)-\frac{1}{\Delta}-\frac{1}{\delta}\right)\left(M_{1}(G)-\Delta^{2}-\delta^{2}\right) \geq\left(\sum_{i=1}^{n} \sqrt{d_{i}}-\sqrt{\Delta}-\sqrt{\delta}\right)^{2}
$$

From the above inequality we obtain

$$
\sum_{i=1}^{n} \sqrt{d_{i}} \leq \sqrt{\Delta}+\sqrt{\delta}+\sqrt{\left(I D(G)-\frac{1}{\Delta}-\frac{1}{\delta}\right)\left(M_{1}(G)-\Delta^{2}-\delta^{2}\right)} .
$$

Now, from the above inequality and (2.1) we obtain (3.11).
Equality in (3.12) holds if and only if $d_{2}=d_{3}=\cdots=d_{n-1}$. Equality in (2.1) holds if and only if $G \cong \overline{K_{n}}$, or $G \cong t K_{2} \cup(n-2 t) K_{1}, 1 \leq t \leq \frac{n}{2}$. Since G has no isolated vertices, the inequality (3.11) holds if and only if $G \cong \frac{n}{2} K_{2}$, for even n.

By a similar procedure the following results are proved.
Theorem 3.7. Let G be a graph of order $n \geq 2$ without isolated vertices. Then

$$
E(G) \leq \sqrt{\Delta}+\sqrt{\left(I D(G)-\frac{1}{\Delta}\right)\left(M_{1}(G)-\Delta^{2}\right)} .
$$

Equality holds if and only if $G \cong \frac{n}{2} K_{2}$, for even n.
Theorem 3.8. Let G be a graph of order $n \geq 2$ without isolated vertices. Then

$$
E(G) \leq \sqrt{I D(G) M_{1}(G)} .
$$

Equality holds if and only if $G \cong \frac{n}{2} K_{2}$, for even n.

References

[1] M. Biernacki, H. Pidek, C. Ryll-Nardrzeski, Sur une inequalite entre des integrales definies, Annales Univ. Mariae Curie-Sklodowska A, 14 (1950), 1-4.
[2] B. Borovićanin, K. C. Das, B. Furtula, I. Gutman, Bounds for Zagreb indices, MATCH Commun. Math. Comput. Chem., 78(2017), 17-100.
[3] K. C. Das, S. A. Mojallal, I. Gutman, Relations between degrees, conjugate degrees and graph energies, Lin. Algebra Appl. 515 (2017) 24-37.
[4] S. Fajtlowicz, On conjectures of Graffiti - II, Congr. Numer. 60 (1987) 189-197.
[5] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538.
[6] I. Gutman, K. C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem., 50(2004), 83-92.
[7] I. Gutman, The energy of a graph, Ber. Math.-Statist. Sekt. Forschungsz. Graz 103 (1978) 1-22.
[8] I. Gutman, E. Milovanović, I. Milovanović, Beyond the Zagreb indices, AKCE Inter. J. Graph. Comb. 17 (1) 74-85.
[9] I. Gutman, B. Furtula, The total π-electron energy saga, Croat. Chem. Acta 90 (3) (2017) 359-369.
[10] I. Gutman, B. Furtula, Survey of graph energies, Math. Inter. Research, 2 (2017) 85-129.
[11] I. Gutman, X. Li (Eds.) Energies of graphs - Theory and applicatiins, Univ. Kragujevac, Kragujevax, 2016.
[12] Y. Hu, X. Li, Y. Shi, T. Xu, I. Gutman, On molecular graphs with smallest and greatest zeroth-order general Randić index, MATCH Commun. Math. Comput. Chem. 54 (2005) 425434.
[13] L. B. KIER, L. H. Hall, Molecular connectivity in chemistry and drug research, Academic Press, New York, 1976.
[14] H. Kober, On the arithmetic and geometric means and on Hölder's inequality, Proc. Amer. Math. Soc. 9 (1958) 452-459.
[15] X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2012.
[16] X. Li, J. Zheng, A unified approach to the extremal trees for different indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 195-208
[17] A. Lupas, A remark on the Schweitzer and Kantorevich inequalities, Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 383 (1972) 13-15.
[18] A. Milićević, S. Nikolić, On variable Zagreb indices, Croat Chem Acta 77 (2004) 97101.
[19] P. Milošević, I. Milovanović, E. Milovanović, M. Matejić, Some inequalities for general zeroth-order Randić index, Filomat 33 (16) (2019) 5249-5258.
[20] D. S. Mitrinović, P. M. Vasić, Analytic Inequalities, Springer Verlag, Berlin-HeidelbergNew York, 1970.
[21] S. Nikolić, G. Kovačević, A. Milićević, N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta 76 (2003) 113-124.

[^0]: Manuscript received November 12, 2021; accepted January 21, 2022.
 Ş. B. Bozkurt Altındağ is with the Yenikent Kardelen Konutları, Selçuklu, 42070 Konya,Turkey; M. Matejić, I. Milovanović, E. Milovanović are with the Faculty of Electronic Engineering, Niš, Serbia;

