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The Statistical Behavior of Dust-related Radio Waves

K. Racković Babić

Abstract: Radio and plasma wave instruments in space can detect cosmic dust over a wide
range of sizes through impact ionization. Our understanding of dust particle properties can
be gained from analyzing such electric pulses. In order to explain how dust particles produce
electrical signals, several physical mechanisms have been proposed. Recently, Rackovic Babic
et al. (2022) developed a model which takes into account all the effects of charge collection
by the spacecraft and electrostatic influence from charges in its vicinity. The authors tested the
model’s accuracy using the database specially created for a given purpose. This paper aims to
examine the mathematical significance of the obtained results from the fitting method.
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1 Introduction

The dust impacts on spacecraft produce measurable electrical signals. Such transient volt-
age signals are generated by the expanding plasma cloud after impact ionization. The an-
tenna instruments can measure these voltage signals that provide information about dust
particles. Hence, developing models of how signals are generated is important in order to
be able to link observed electric signals to the physical properties of the impacting dust.
The obtained parameters from fitting the model to measured waveforms can provide infor-
mation on dust particles and characteristics of impact-generated plasma cloud, as well as
characteristics of ambient plasma environment. Several models have attempted to describe
the physical mechanisms leading to the generation of voltage signals measured by antennas
(e.g. [7],[3] ). In this paper, we will concentrate on the model proposed by [5], which takes
impact-ionization-charge collection and electrostatic-influence effects into account.
The accuracy of the model was tested using dust-related data from the STEREO satellite.
The results obtained provide insight into interesting physical phenomena related to dust im-
pact. We tend to evaluate the proposed model’s accuracy through a mathematical approach
in the present work.
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2 Fitting model

The model will be briefly presented below. Physic backgrounds are out of the scope of
current work, so we won’t discuss it here. A detailed description of the model can be found
in the paper [5]. Function

ϕ(t) = A(1/(1−T1/T2))(e(−t/T2)− e(t/T1))−Be(−t/T2), (1)

with four free parameters (A, B, T 1 and T 2) is the core of our interest. The function was
used to fit the signal recorded by the STEREO/TDS instrument [1], and a Levenberg-
Marquardt least-squares minimization method was used to accomplish this. Such a pro-
cedure produced very interesting empirical results. We will now use the same function, and
the same data set in order to test the hypothesis statistically. By determining the odds that
obtained results occurred by chance, we are determining whether obtained results are valid.

3 Analysis

The previous research experience offered the above relation (Eq.(1) for describing our
events. This means that we know the functional relationship between the measurement
results and only need to determine the coefficients. When the statistical conditions are met,
the least-squares method (LSM) can be used to determine those values. For LSM to be
entirely reliable, it should be possible to subsume our relation into one of the acceptable
models, which will not be possible with Eq.(1). Therefore, the statistical modeling was
performed using the Levenberg-Marquardt method (LM). Our goal here is to evaluate the
quality of the performed modeling.
The following quantities can describe a real object (system, process, phenomenon, etc.):
input variables (X) - describe the operating (in the mathematical models known as indepen-
dent variables); output variables (Y )- provide behavior or the result (known as dependent
variables); hidden variables (random residuals) (E) - cannot be directly measured, but show
influence on the dependent variable of factors that are not to be taken into account at the
”entrance” (known as residues).
Particularly, for the results l obtained when measuring an object O

O ←→{(x(1)k ,x(2)k , ...,x(n)k ,y(1)k ,y(2)k , ...,y(m)
k )}, (k = 1, l) (2)

using Eq.(1), we created the transformation

f⃗{O}= f⃗ (x(1),x(2), ...,x(n)) =


f (1)(x(1),x(2), ...,x(n))
f (2)(x(1),x(2), ...,x(n))

...
f (m)(x(1),x(2), ...,x(n))

 (3)

which should enable the best calculation of the dependent variables Y from the set values
of the independent variables X . There is a difference in meaning and designations be-
tween the sample mean and conditionally theoretical mean, y(x) i ym(x), and since we do
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not know the absolute measurement error of a quantity, in practice we also do not know
the theoretical mean, but we rely on the fact that, according to the law of large numbers
y(x) −−−−−−−−→

by probability
ym(x), when the number of observations, from which y(x) is calculated,

tends to infinity.
In the examples, we will denote theoretical averaging with E and dispersion of the ran-
dom variables with D. The best-based and most accurate solution relies on probabilistic
knowledge - ie. the form of the distributive law is likely to be the residual ε in the se-
lected model. Assuming the normal law gives the probability distribution of the resid-
ual ε , with parameters (0,σ2) for an arbitrary realization x, where σ is a constant, and
[ε(xi), i = 1,n] are mutually statistically independent, the lowest error for ym(x) accord-

ing to model f (x)⊂ f⃗ (x) can be obtained by the LSM as ∆n( f ) =
n
∑

i=1
(yi− f (xi))

2→min
f∈ f⃗

.

Different residue types may permit different methods of selecting the quality of approxima-
tion ∆n. Anyway, we analyze the relation between y and (x(1),x(2), ...,x(n)), in the form
y = f (x(1),x(2), ...,x(n);Θ) + ε , where ε is residue and f (X ;Θ) is the function of some
known parametric family F⃗ = { f (X ;Θ)}, Θ ⊂ A into which an unknown numerical value
of the parameter Θ is inserted. We do not consider the analytical form of Ym(X) = f (X ;Θ)
here, but rather the nature of the variables analyzed (X ,y), as well as their interpreta-
tion of the function f (X ;Θ). Thus, if there is a dependence of the value of the resulting
characteristic η not only on the value of X , but also on uncontrolled factors such that
for each fixed value of (X∗), the corresponding values of the random characteristic are
η(X∗) = (η |X = X∗) exposed to some random scattering, we can evaluate the quality of
our approximation from that feature. Here, the predictor variables X are in the role of a non-
random parameter on which the probability distribution law - especially the mean value and
dispersion - of the investigated resulting criteria η depends. The following mathematical
model is suitable for dependencies of this type

η(X) = f (X)+ ε(X), (4)

where f (X) describes the behavior of the conditional mean ym(X) = Eη(X) = f (X) based
on X , and the remaining component ε(X) is a reflection of the nature of η(X) [2]. Note
here, Eε(X) ≡ 0 based on the assumption that for all X there is a finite dispersion for
ε(X) (Dε(X) < ∞), while the dispersion may depend on X (Dε(X) = σ2(X)). Note that
in the model, neither the random component’s nature nor its probability distribution are
related to the structure of f (X) and, in particular, are not dependent on parameter Θ in
the parametric model form - when instead of all functions f (X) considers any f (X ;Θ).
In this way, the permissible nature compositional parts of the model (3) are concretized:
ym(x) = Eη(x) = f (x) = θ0 +θ1x and σ2(x) = Dε(x) = σ2

0 (ym(x))2, where σ0 is constant.
Typically, both vectors, η i ξ , are influenced by numerous uncontrolled and random factors.
Thus, it is useful to split the resulting feature η into two random components

η = f(ξ )+ ε, (5)

where the left-hand side part is determined by vectorized function f of the variables f, and
ε is the remaining component, as long as the components of the vector f(ξ ) and ε meet
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the conditions: Eε(k) = 0, Dε(k) = σ2
k < ∞, cov( f (k)(ξ ),ε(k)) = E|( f (k)(ξ )ε(k))| −

E f (k)(ξ )Eε(k) = 0. For a unique resulting feature (m = 1) and a linear expansion of f (ξ ),
we have:

η = θ0 +
p

∑
k=1

θkx(k)+ ε. (6)

Assuming ym(X) = E(η |ξ = X), Eq.(6) turns into a linear regression equation ym(X) =
θ0 +∑p

k=1 θkx(k). It is possible that ε in the Eq.(4) is most likely (with a probability of 1)
equal to zero. Then η and ξ are only connected by η = f (ξ ) (this should not be confused
with the functional connection of non-random variables).
A class of admissible solutions F should be selected based on the analysis of the character
and degree of statistical relationships between the examined variables, i.e., the parametric
family of functions F(X), from which the best approximation < f(X) > of the required
dependence is selected. This aims to determine which approximations represent the best
solution to the shape optimization

< f(X)> = arg extr
f∈F

∆n(f) , (7)

Where the functional ∆n(f) determines the quality criterion of the resulting approximation,
which will be denoted by η (or Y ) by the function f (X) from class F . The choice of the
specific form of that functional relies on the knowledge of the probabilistic nature of the
residual ε in the selected models (Eq.(4), Eq.(5) and Eq.(7)). The LSM functional is the
most widely used. If parametric families of functions f(X ;Θ) are given in the property of
class f, the analysis becomes statistical, parameter values < Θ > for which the maximum is
reached by Θ of the functional ∆n(f(X ;Θ)) and corresponding models are called paramet-
ric.
Last but not least, the phase of analyzing the accuracy of the connection equations con-
firms that the approximation < f(X) > of the unknown theoretical function fT (X), which
was found in accordance with Eq.(1) and based on the Eq.(3), Eq.(4) and Eq.(6), represents
only an approximate representation of the real dependence f(X). The error δ of the de-
scription of the function fT (X), via < f(X) > in the general case has two components of:
approximation errors (δF ), and errors due to sampling (δ (n)). The value of δF is correlat-
ing with the choice of class F. When fT (X) ∈ F (special cases), δF = 0. Additionally, δ (n)
remains due to the sample’s own limitations. This error can be reduced by increasing the
sample size (n). Thus, for δF = 0 and with correctly chosen methods of statistical evaluation
sampling, error δ (n)→ 0 when n→ ∞ by probability.
This phase is illustrated graphically in Figure 1. The figure illustrates well the need to
apply the above theoretical operations to test the possibility of eventual improvement of the
initial function (Eq. (1)). The total number of dust-related pulses in our dataset is 349632.
This means we are referring to the so-called a posteriori correction of theoretically, expe-
rientially, and intuitively obtained relations, while this correction must be performed sta-
tistically. Due to the sample size, we leave this task to the next phase of our research and
explain the necessity of such steps. The theoretical basis for this correction is presented
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below.
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Fig. 1. Residue behavior in the X, Y, and Z antenna system, with two events given for each monopole. It is
evident that each monopole behaves as a part of the system, which in its entirety provides a normal distribution
for the residuals, but with visible excesses and moments. In each individual image, the frequency distribution
of the residuals in the broader environment of the mean (it should be 0) is indicated in black color, as well as
the corresponding approximation with a Gaussian curve. The curve shown in red with a pronounced peak is
a theoretical Gaussian curve with the parameters of the mean and the dispersion of the residual. It is usually
centered and zero outside the ±3σ zone.

A qualitative criterion must be specified based on which we can select the best predictive
model ym(x). The best solution is determined by knowing the probabilistic nature - and thus
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the law of probability distribution - of the residual ε in the selected model. This criterion is
provided by the LSM under certain conditions.
It is explicitly incorrect in our example that the residual dispersion is constant, which means
that the conditional dispersion D(ε|ξ = x) = D(η − θ0− θ1 · ξ |ξ = x) = σ2(x) actually
depends on x.
Assume we divide all dependent variables by dispersion s(x). Now we have some sort of
normalized residual ε̃(x) = ε(x)/s(x). At a later stage, we will demonstrate that in such a
situation, the assumption that the distribution function is likely to be F(ε̃) =N (0,σ2), σ ̸=
σ(x)x) is valid. The previous minimization leads to the task of determining the extremum

∆n( f ) = ∆n(θ0,θ1) =
n
∑

i=1

(
yi−θ0−θ1xi

s(xi)

)2
→ min

θ0,θ1
, specifically, to the system:

∂∆n(θ0,θ1)

∂θ0
=−2

n

∑
i=1

s−2(xi) · (yi−θ0−θ1xi) = 0

∂∆n(θ0,θ1)

∂θ1
=−2

n

∑
i=1

s−2(xi) · xi · (yi−θ0−θ1xi) = 0.

As a result of solving this system, we get the estimations θ̂0 and θ̂1 of the unknown param-
eters θ0,θ1 via the system

θ̂0 =

[
n
∑

i=1
s−2(xi)

][
n
∑

i=1
s−2(xi) · xiyi

]
−
[

n
∑

i=1
s−2(xi) · xi

][
n
∑

i=1
s−2(xi) · yi

]
[

n
∑

i=1
s−2(xi) · xi

]2

−
[

n
∑

i=1
s−2(xi)

][
n
∑

i=1
s−2(xi) · x2

i

]

θ̂1 =

[
n
∑

i=1
s−2(xi)

][
n
∑

i=1
s−2(xi) · xiyi

]
−
[

n
∑

i=1
s−2(xi) · xi

][
n
∑

i=1
s−2 · xiyi

]
[

n
∑

i=1
s−2(xi)

][
n
∑

i=1
s−2(xi) · x2

i

]
−
[

n
∑

i=1
s−2(xi) · xi

]2

4 Discussion and Conclusion
In parametric analysis, even when experience indicates the model type, the parameters of
that model can vary significantly in accuracy, while transformations of translation and ro-
tation of the resulting regression curves represent the most straightforward cases that can
already be identified a priory at the level of experience. Suppose the considered parameter
within the general population has a normal distribution. In that case, the mathematical ex-
pectation and dispersion (mean-square deviation) are sufficient to define that distribution,
i.e., evaluates those parameters because they entirely determine the normal distribution.
Therefore, the statistical evaluation of the unknown parameter of the theoretical distribu-
tion is a function of the experimental (sampled) random variables. Being aware that the use
of a sample to estimate parameters could lead to incorrect estimation of those parameters,
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here we list the basic requirements that the estimation of such parameters must meet to ar-
rive at a reasonable value ultimately.
Condition E(Θ̂) = Θ will not remove errors in the values of individual assessments, but it
will eliminate systematic errors in assessments. Known as the centrality of the assessment,
this condition does not depend on sample size. Otherwise, the assessment is not centered.
Note the centrality of the rating does not guarantee the right to accept every centered rating
as reliable. Hence, another characteristic of statistical assessment must be introduced - the
effectiveness. A statistical assessment is effective for a given sample if it has the smallest
possible dispersion limm≪mmax D(Θ̂(m)

i )−→ min . However, suppose an evaluation of a pa-
rameter is ”sensitive” to a change in the sample volume. In that case, the question of its
stability is also raised, so the third requirement for statistical evaluations with large sample
volumes is stability. An estimate Θ̂ of the parameter Θ̂ is considered stable in probability if
limm→∞ Θ̂(m)

i
v−→ Θ, i = 1,n .

Based on the preliminary analysis of our data, it seems necessary to carry out a comprehen-
sive analysis of experimental data in terms of modeling all residuals, as a whole and by the
event.
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