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Implementation of Optimal Investment Problem on a Linear
Systolic Array

T. Z. Mirkovi &, D. C. Dolicanin, I. Z. Milovanovi¢, E. I. Milovanovi¢

Abstract: One of the main problems in operational research is the proloff optimal invest-
ments. This paper describes a procedure for synthesisar lystolic array that implements
the algorithm for solvin a problem of optimal investmentfieTperformances of the obtained
array, including execution time, number of processing elets, speed-up and efficiency are
then discussed.
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1 Introduction

One of the main problems in operational research is the enobif optimal investments.
The goal is to determine the distribution of a budgenamits of money tan,m < n, in-
vestment programs and achieve maximum benefit. For eacétimeat program the benefit
is known in advance if quantity f0 < i < n, units of money is invested in it. The benefits
are defined by the corresponding rectangular mairix (& )mxn+1, Of NoNnegative num-
bers. The elemerd;; denotes the benefit achieved by thth investment program if— 1
units of money is invested in it. Solving problem of optimaveéstment can be expressed
as a transformation of matriM = (& )mxn+1 iNto matrixM = (&i)mxn+1 , Whose last row
represents the solution of a given problem. This transftomaan be described as [1]:

Arnio—i = mle{ar,k,eTr_l,n+s_k_1} (1)

foreachi=1,2,... n+1,k=1,2,....n+2—iandr =23,...,m. The initial values are
=@y, i = 12...,n+1.

Computational tasks can be conceptually classified intofandlies: compute-bound
computations and I/0-bound computations [2]. For exampl&trix multiplication repre-
sents compute bound computation. On the other hand, addmgniatrices is 1/0-bound
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task. A problem of optimal investments falls into the catggaf compute-bound tasks.
Speeding-up a compute-bound computations can often bengtisbed in a relatively sim-
ple and inexpensive manner, that is by the systolic approaithout increasing 1/O re-
quirements. Systolic arrays (SA) are high-performancecisb purpose architectures typ-
ically used to meet specific application requirements orftéoad computations that are
especially taxing to general purpose computers. The maptufes of adopting SA for
special purpose processing architectures are: simplesgutlr design, concurrency, near-
neighbour communication and balancing computations Wgh4O. A systolic system is a
network of processing elements (PEs) that rhythmically mate and pass data through the
system. Once a data item is brought from the memory, it carsee effectively in each PE
as it passes while being "pumped” from cell to cell along tiraya

2 Synthesis of the basic systolic array

The first step in systolic array synthesis is constructingystotic algorithm for a given
problem [3]-[6]. Therefore we have to construct The systalgorithm for the computa-
tions defined by (1).

The computations in (1) are identical with respect to r, arelrapeated m-1 times.
Therefore we will describe the synthesis of a bidirectioBal for some fixed r. Without
affecting the generality we take= 2. We will denote this array as the basic one. Having
this in mind and in order to simplify the denotation, we inlnge the following indication

A n42—i =Cny2—i, A1n+3—i—k =bnya—i—k, k=&,

foreachi=12....n+1,andk=1,2,...,.n+2—i. Now, we can rewrite (1), for r=2, in
the form of recurrence relation

cﬁﬁzfi = ml?x{cf]ﬁzlfi , 8+ bnys—i—k} 2
wherecﬁgzz_i =0, for each each=1,2,....n+4 1.
The corresponding systolic algorithm has the followingrior
Algorithm _1
for k:=1ton+1do
fori:=1tokdo

a(i,1,k) :=a(i,0,k);
b(i,1,k) :=b(i — 1,1,k);
c(i,1,k) :=max{c(i,1,k—1),a(i,1,k) + b(i,1,k)}
endfor{i, k}.
The computational structure of the above algorithm is deit@ed by the inner compu-
tation space

Pt = {(i,Lk) [1<i<k 1<k<n+1} 3)
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where data are used or computed, and a dependency matrik whitsists of a set of
constant dependency vectors

1 0 O
p-[& & &]-|o0 10 @
0 0 1

each of them representing a data dependency correspording one of the variablds a
andc, respectively.

The space of initial computations of Algorithty P, = {Pn(a) UPn(b) UPR(C)} is
defined as follows

Prn(@ = {(i,0k)[1<i<k1<k<n+1}
Pn(b) = {(0,LKk)[1<k<n+1} (5)
Pn(c) = {(iLl1k)[1<i<n+1}

The bidirectional SA that implements Algorithfis obtained by projecting computa-
tional structure of the algorithrfD, P¢) along the projection vectgii = [L0 T (see for
example [5 ]-[7]). Such the array is not optimal with respiecthe number of processing
elements (PE) for a given problem size. In order to optimieedrray, we have to accom-
modate both the inner computation sp&ggand the space of initial computatioRg to the
projection directionti. This is achieved by mapping = (F,G) (see for example [7]-[9])
which mapsPy; into Py, i.e.

T p*
PInt'—>Pint

The mapping H is defined as

1 00 i 0 i
[ulva.ﬁlk]uG{ono HH OH 1 ] ©
1 01 kK -1 k+i—-1

for eachi = 1,2, )k andk = 1,2,,n+ 1. Here[i 1K]T is an index point in the spad@,
while [u1v]" is an index point in the accommodated sp&ig Similarly, the space of
initial computationsP, is mapped intd>;,. For the index points ifP;, we introduce the
following periodicity

a(i,0,k+n+1)=a(i,0,k), b(0,1,k+n+1)=Db(0,1,k), c(i,1,k+n+1)=c(i,1k).

Now, the bidirectional SA that implements Algorithinis obtained by mapping computa-
tional structurg(P;;,D) using transformation matri% s (see for example [5]), i.e.

S: (Py,D) — (F?mhA)

whereP,; determines théx,y) positions of the processing elements in the obtained array,
while A defines communication links between the PEs and the direcfidata flow. Matrix
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Sis called a valid transformation matrix and it is determiriedeach allowable projection
direction separately. The matri&is not uniquely defined for a given projection direction.
More about the criteria for determining valid transforroatimatrices one can find in [12].
One of the possible transformation matrices for the dioegi = [1 0 1|7 is

-1 01
S:[ 010}

The (x,y) positions of the PEs in the obtained SA and data schedule &ieghinning of the
computation are given by the following formulas:

1 (k-1

B 1

e v,

“ 3 2« 1
C[2+2%-31 [-1
|2+ ]ern[ 0}

157 3]

PE —~

a(i,0i+k—1) —
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b(i,1,i+k—1)
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o

c(i,i+k—1) ~— 1 0

< X K X K X K X

L
o

foreachi =12, ,kandk=1,2 ,n+1, where

Fol if nis even
n, if nisodd

while wis greater of the integers from the 4€ 1} that satisfies the condition
—2(i—1)+wn<0, ifi=1=w=0.

The communication links between the PEs and the directibasita flow are determined
from
-1 0 1
—_epD—[g2 &8 ®21_
p-so-[& & &)= 93]

The bidirectional SA and data schedule at the beginning efctmputation for n=3 are
presented in Fig. 1. The structure of the PE is shown in Fidt i8.a cell which consists
of two latches, LB and L_C, an adder and a comparator.
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Fig. 1. The bidirectional systolic array and data scheduteebeginning of the computation, for=3
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Fig. 2. The structure of the processing element

3 Performances of the basic SA

Various performance parameters can be used to measuratheeteof the synthesized SA.
Here we will use: running (or execution time), number of gssing elements, speed-up
and efficiency.

The running time,Tio;, of the systolic algorithm includes: Tin, time required tbe
data elements to enter the PE where the first computatios fiee;Texe time required to
execute all the computation$;, time required for data elements to exit the array from the
PE where the last computation finishes, i.e.

Ttot = Tin + Texe+ Tout~
In our case we have
Tin=n, Texe=N+1, Tout =N,

which means that the total running time for computing one edwnatrix M = (&), 1 <
r<m,2<i<n+1lisTg =3n+1. Since this computation is repeated- 1 times the
time needed to compute all rows of mathikis equal to

Ty = (m—1)(3n+1).



158 T. Z. Mirkovié, D. C. Dolicanin, I.Z. Milovanovi¢, E. I. Milovanovit

The number of processing elements in the obtained SA is
Q=n+1

It is an optimal number of PEs for a given problem size. This lsa concluded from the
fact that computing of elemer 1, for eachr, requiresn+ 1 calculations of the type
max{c,a-+ b}.

If Ty is the execution time of Algorithni on a uniprocessor system, then the speed-up
of the systolic array is defined as .

1
S= T

In our case we have
(m—=1)(n+1)(n+2)

Tl - 2 )
so,
~ (n+1)(n+2) _/n
== 2(3n+1 “’O(a)‘
The efficiency of the systolic array is defined as
S
En a

In our case we have

4 Conclusion

The solution of optimal investment problem has been dismligs this paper. To speed-up
the computation a spcial purpose parallel architecturejeta linear systolic array, was
synthesized. The obtained array is optimal with respectpmblem size.
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