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Implementation of Optimal Investment Problem on a Linear
Systolic Array

T. Z. Mirkovi ć, D. Ć. Dolićanin, I. Ž. Milovanovi ć, E. I. Milovanović

Abstract: One of the main problems in operational research is the problem of optimal invest-
ments. This paper describes a procedure for synthesis a linear systolic array that implements
the algorithm for solvin a problem of optimal investments. The performances of the obtained
array, including execution time, number of processing elements, speed-up and efficiency are
then discussed.
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1 Introduction

One of the main problems in operational research is the problem of optimal investments.
The goal is to determine the distribution of a budget ofn units of money tom,m≤ n, in-
vestment programs and achieve maximum benefit. For each investment program the benefit
is known in advance if quantity ofi,0≤ i ≤ n, units of money is invested in it. The benefits
are defined by the corresponding rectangular matrixM = (ari )m×n+1, of nonnegative num-
bers. The elementari denotes the benefit achieved by ther-th investment program ifi −1
units of money is invested in it. Solving problem of optimal investment can be expressed
as a transformation of matrixM = (ari )m×n+1 into matrixM̄ = (āri )m×n+1 , whose last row
represents the solution of a given problem. This transformation can be described as [1]:

ār,n+2−i = max
k

{ar,k, ār−1,n+3−k−1} (1)

for eachi = 1,2, . . . ,n+1, k = 1,2, . . . ,n+2− i andr = 2,3, . . . ,m. The initial values are
ā1i ≡ a1i , i = 1,2, . . . ,n+1.

Computational tasks can be conceptually classified into twofamilies: compute-bound
computations and I/O-bound computations [2]. For example,matrix multiplication repre-
sents compute bound computation. On the other hand, adding two matrices is I/O-bound
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task. A problem of optimal investments falls into the category of compute-bound tasks.
Speeding-up a compute-bound computations can often be accomplished in a relatively sim-
ple and inexpensive manner, that is by the systolic approach, without increasing I/O re-
quirements. Systolic arrays (SA) are high-performance, special purpose architectures typ-
ically used to meet specific application requirements or to off-load computations that are
especially taxing to general purpose computers. The major features of adopting SA for
special purpose processing architectures are: simple and regular design, concurrency, near-
neighbour communication and balancing computations with the I/O. A systolic system is a
network of processing elements (PEs) that rhythmically compute and pass data through the
system. Once a data item is brought from the memory, it can be used effectively in each PE
as it passes while being ”pumped” from cell to cell along the array.

2 Synthesis of the basic systolic array

The first step in systolic array synthesis is constructing a systolic algorithm for a given
problem [3]-[6]. Therefore we have to construct The systolic algorithm for the computa-
tions defined by (1).

The computations in (1) are identical with respect to r, and are repeated m-1 times.
Therefore we will describe the synthesis of a bidirectionalSA for some fixed r. Without
affecting the generality we taker = 2. We will denote this array as the basic one. Having
this in mind and in order to simplify the denotation, we introduce the following indication

ā2,n+2−i = cn+2−i , ā1,n+3−i−k = bn+3−i−k, a2,k = ak,

for eachi = 1,2, . . . ,n+1, andk= 1,2, . . . ,n+2− i. Now, we can rewrite (1), for r=2, in
the form of recurrence relation

c(k)n+2−i = max
k

{c(k−1)
n+2−i ,ak+bn+3−i−k} (2)

wherec(0)n+2−i ≡ 0, for each eachi = 1,2, ...,n+1.
The corresponding systolic algorithm has the following form
Algorithm 1

for k := 1 to n+1 do
for i := 1 to k do

a(i,1,k) := a(i,0,k);
b(i,1,k) := b(i −1,1,k);
c(i,1,k) := max{c(i,1,k−1),a(i,1,k)+b(i,1,k)}

endfor{i,k}.
The computational structure of the above algorithm is determined by the inner compu-

tation space

Pint = {(i,1,k) | 1≤ i ≤ k, 1≤ k≤ n+1} (3)
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where data are used or computed, and a dependency matrix which consists of a set of
constant dependency vectors

D =
[

~e3
b ~e3

a ~e3
c

]

=





1 0 0
0 1 0
0 0 1



 (4)

each of them representing a data dependency corresponding to the one of the variablesb,a
andc, respectively.

The space of initial computations of Algorithm1, Pin = {Pin(a)∪Pin(b)∪Pin(c)} is
defined as follows

Pin(a) = {(i,0,k) | 1≤ i ≤ k,1≤ k≤ n+1}

Pin(b) = {(0,1,k) | 1≤ k≤ n+1} (5)

Pin(c) = {(i,1,k) | 1≤ i ≤ n+1}

The bidirectional SA that implements Algorithm1 is obtained by projecting computa-
tional structure of the algorithm(D,Pint) along the projection vector~µ = [1 0 1]T (see for
example [5 ]-[7]). Such the array is not optimal with respectto the number of processing
elements (PE) for a given problem size. In order to optimize the array, we have to accom-
modate both the inner computation spacePint and the space of initial computationsPin to the
projection direction~µ . This is achieved by mappingH = (F,G) (see for example [7]-[9])
which mapsPint into P∗

int , i.e.

Pint
T

7−→P∗
int

The mapping H is defined as

[u 1 v]T = F · [i 1 k]T +G=





1 0 0
071 0
1 0 1



 ·





i
1
k



+





0
0

−1



=





i
1

k+ i −1



 (6)

for eachi = 1,2, ,k andk = 1,2, ,n+ 1. Here[i 1 k]T is an index point in the spacePint ,
while [u 1 v]T is an index point in the accommodated spaceP∗

int . Similarly, the space of
initial computationsPin is mapped intoP∗

in. For the index points inP∗
in we introduce the

following periodicity

a(i,0,k+n+1) ≡ a(i,0,k), b(0,1,k+n+1) ≡ b(0,1,k), c(i,1,k+n+1) ≡ c(i,1,k).

Now, the bidirectional SA that implements Algorithm1 is obtained by mapping computa-
tional structure(P∗

int ,D) using transformation matrixS2×3 (see for example [5]), i.e.

S: (P∗
int ,D)→ (P̄int ,∆)

whereP̄int determines the(x,y) positions of the processing elements in the obtained array,
while ∆ defines communication links between the PEs and the direction of data flow. Matrix
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S is called a valid transformation matrix and it is determinedfor each allowable projection
direction separately. The matrixS is not uniquely defined for a given projection direction.
More about the criteria for determining valid transformation matrices one can find in [12].
One of the possible transformation matrices for the direction~µ = [1 0 1]T is

S=

[

−1 0 1
0 1 0

]

.

The(x,y) positions of the PEs in the obtained SA and data schedule at the beginning of the
computation are given by the following formulas:

PE 7→

[

x
y

]

=

[

k−1
1

]

a(i,0, i +k−1) 7→

[

x
y

]

a

=

[

k−1
3−2i −k

]

+wn̄

[

0
1

]

b(i,1, i +k−1) 7→

[

x
y

]

b

=

[

2i +2k−3
1

]

+wn̄

[

−1
0

]

c(i,1, i +k−1) 7→

[

x
y

]

c

=

[

1−2i
1

]

+wn̄

[

1
0

]

for eachi = 1,2, ,k andk= 1,2, ,n+1, where

n̄=

{

n+, if n is even
n, if n is odd

while w is greater of the integers from the set{0,1} that satisfies the condition

−2(i −1)+wn̄< 0, if i = 1⇒ w= 0.

The communication links between the PEs and the directions of data flow are determined
from

∆ = S·D =
[

~e2
b ~e2

a ~e2
c

]

=

[

−1‘ 0 1
0 1 0

]

.

The bidirectional SA and data schedule at the beginning of the computation for n=3 are
presented in Fig. 1. The structure of the PE is shown in Fig. 2.It is a cell which consists
of two latches, LB and L C, an adder and a comparator.
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Fig. 1. The bidirectional systolic array and data schedule at the beginning of the computation, forn= 3
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Fig. 2. The structure of the processing element

3 Performances of the basic SA

Various performance parameters can be used to measure the features of the synthesized SA.
Here we will use: running (or execution time), number of processing elements, speed-up
and efficiency.

The running time,Ttot, of the systolic algorithm includes: Tin, time required forthe
data elements to enter the PE where the first computation takes place;Texe, time required to
execute all the computations;Tout, time required for data elements to exit the array from the
PE where the last computation finishes, i.e.

Ttot = Tin +Texe+Tout.

In our case we have
Tin = n, Texe= n+1, Tout = n,

which means that the total running time for computing one rowof matrix M̄ = (āri ), 1≤
r ≤ m, 2≤ i ≤ n+ 1 is Ttot = 3n+ 1. Since this computation is repeatedm− 1 times the
time needed to compute all rows of matrix̄M is equal to

Tt = (m−1)(3n+1).
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The number of processing elements in the obtained SA is

Ω = n+1.

It is an optimal number of PEs for a given problem size. This can be concluded from the
fact that computing of element ¯ar,n+1, for eachr, requiresn+ 1 calculations of the type
max{c,a+b}.

If T1 is the execution time of Algorithm1 on a uniprocessor system, then the speed-up
of the systolic array is defined as

Sn =
T1

Tt
.

In our case we have

T1 =
(m−1)(n+1)(n+2)

2
,

so,

Sn =
(n+1)(n+2)

2(3n+1
≈ O

(n
6

)

.

The efficiency of the systolic array is defined as

En =
Sn

Ω
.

In our case we have

En =
n+2

2(3n+1)
≈ O

(

1
6

)

.

4 Conclusion

The solution of optimal investment problem has been discussed in this paper. To speed-up
the computation a spcial purpose parallel architecture, namely linear systolic array, was
synthesized. The obtained array is optimal with respect to aproblem size.
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Designing hexagonal systolic arrays by composite mappings, Facta Universitatis, Ser. Math.
Inform., 12 (1997), 283-296.
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ing of processor-time optimal systolic arrays for band matrix-vector multiplication, Comput.
Math. Appl., Vol 32, 2 (1996), 21-31.
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