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Vibrations of a System: Viscoelastic Rod of Fractional Type
and a Body Attached to the Rod
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Abstract: We consider motion of a system consisting of a viscoelastic rod of finite length,
described by the fractional Zener model and a body attached to its free end (the other end of a
rod is fixed). The motion of a rod is described by the system of partial differential equations
of integer and fractional order. The motion of a body is translatory along the axis of the rod
and it represents the boundary condition for the equations describing the motion of a rod. The
initial-boundary value system is solved by the use of the Laplace transform and is given in the
convolution form. Solutions are tested numerically.
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1 Introduction

We treat the motion of a rod with one end fixed, while attached at the other end there is
a body of mass m. The length of a rod is L and its axis, at initial time moment as well as
during the motion, coincides with the X axis. Let x denote a position of a material point of a
rod at the initial time instant 7y = 0. The position of this point at time instant ¢ is x4+ u (x,?) .
Equations describing the motion are (x € [0,L], t > 0)

2
2 o (er) = pDyulnn). e(ur) = Sou(xn), n
(l—’_aODta)G('xvt):E(l+b0Dt(x)g(x7t)7 ()
u(x,O) =0, gtu(xao) =0, G(X,O) =0, S(X,O) =0, (3
2
u(0,1) =0, —Ao(L,t)JrF(t)—maatzu(L,t). 4)
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In equation of motion of the rod and in the strain measure (1) we used o, u and € to denote
stress, displacement and strain, respectively, of a material point as unknown functions de-
pending on initial position x and time ¢. In (1) p denotes the density of the material. The
constitutive equation (2) is the fractional Zener model of a solid-like viscoelastic material,
E is a generalized Young modulus (positive constant having dimension of stress), a and b
are generalized relaxation times satisfying a < b, restriction obtained from the Second Law
of Thermodynamics. The operator of the left Riemann-Liouville fractional derivative of
order o € (0,1) oD is defined as

D3 0= g (g 220 10

where T is the Euler gamma function, * is a convolution (if f,g € L} .(R), suppf,g C

[0,00), then (fxg) (¢) := [5 f(T)g(t—T)dt, t € R). We refer to [8, 10, 16] for a detailed
account on fractional calculus. Initial conditions (3) specify that the system rod-body is in
the rest in the initial time instant. Boundary condition (4); imply that one end of a rod is
fixed. The other boundary condition (4), describes the translatory motion, along the ¥ axis,
of a body attached to the free end of a rod. In (4) A stands for the cross-section area of the
rod and F for the known external force acting on the body.

Regarding the constitutive equation (2) we note that it describes the solid-like viscoelas-
tic material of fractional-order type. The difference between solid and fluid-like materials
is observed in the creep test, i.e., when material is subject to a sudden, but later constant
force on its free end. Namely, solid-like materials creep to a finite value of displacement, in
contrast to the fluid-like materials that creep to an infinite value of displacement. In [5] we
have analyzed the creep test of a material described by the constitutive equation

1 1
| 0o oDIoryay= [ 0. (r)oDle(x.0)ar. )
0 0

with constitutive functions ¢ (y) :=a? and ¢, (y) :=b", y€ (0,1), a < b (see [, 2, 4]),
which is a generalization of a linear fractional-type constitutive equation (2). The conclu-
sion was (according to numerical examples) that the material is solid-like. In [4] we have
analyzed the same problem with the constitutive distribution, proposed in [17] and given by
0 (7) = 3(1) +ad(y—a) and 9, () := by (y—Bo) +b1 8 (y—B1) +b23 (v—Bo).
where 0 is the Dirac delta distribution, a,bg,b1,b, >0, 0< a < By < B, <P, <1,
and the conclusion was (again based upon numerical examples) that the material is fluid-
like. We note that problems similar to (1) - (4) were also treated in [13] for the con-

stitutive equation (1+tZoDf*) 0 = EDQTE thﬁ € and in [12] for the constitutive equation

(1+120D¥)o =Ep (1 + 150D + rg on3 ) €. For the detailed account of applications of
fractional calculus in viscoelasticity see [9, 11, 15].
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2 Convolution form of the solution

The system (1) - (4) transforms into (x € [0,1], 7 > 0)

0 22 0
EG(X,Z‘):KQ?M(X,I), S(x,t)zau(x,t), (6)
(1+a0D%) & (x,1) = (1+boD?) & (x.1), @
w(x.0) =0, 2 u(x.0) =0, 0(x.0) =0, £(x.0) =0, ®)
2
w(0.0) =0, ~o(L0)+F 1) = 2yu(Li). ©

after introduction of the ratio between the masses of a rod and a body «x, as well as dimen-
sionless quantities

Also in writing (6) - (9) we omitted bar over dimensionless quantities.

In order to solve the system (6), (7) subject to initial (8) and boundary data (9), we use
the Laplace transform method. Recall that the Laplace transform of f € L} e R), f=0in
(—o0,0] and | f (t)| < ceX’, t > 0, for some k > 0, is defined by

Fs)=21f0))(s) = /O " F(t)e dr, Res>k

and analytically continued into the appropriate domain D.
Applying formally the Laplace transform to (6) - (9) we obtain (x € [0, 1], s € C\ (—e0,0])

;xc?(x,s) = k25%ii (x,5), &(x,s) = jxﬂ(x, s),
(14+as¥) & (x,s) = (1+bs*) & (x,s), (10)
i(0,5) =0, &(1,s)+s%i(1,5)=F(s).

In order to obtain the displacement u we use (10), so that we have (x € [0,1], s €

(C\ (_0070])

2
szﬁ(x,s) — kK25*M? (s)ii (x,s) =0, (11)

1 o
M(s) ::,/%, s € C\ (~,0]. (12)

where we introduce
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The solution of (11), subject to (10)3, is
i(x,s)=F(s)P(x,s), x€[0,1], s € C\ (—o0,0]. (13)
where (x € [0,1], s € C\ (—e0,0])

- 1 M (s)sinh (kxsM (s))
P08) = 5 (5 sinh (1M (s)) + xcosh (<M (5)) 19

3 Explicit form of the solution

In order to calculate P and obtain the displacement u, we have to invert the Laplace trans-
form in (14). The following proposition establishes location and multiplicity of the poles
of P, given by (14).

Proposition 1 Let (s € C\ (—0,0])
f(s) = sM(s)sinh(xsM (s)) + kcosh (xsM (s)) = 0. (15)

(i) There are countably many complex conjugated zeros of f, denoted by s, and 3,
n € N, respectively.

(ii) The zeros s, (and §,) of f are located in the open left complex plane for all n € N.

(iii) The zeros s, (and 5,) of f are of multiplicity one, for fixed and sufficiently large n € N.
Now we give the theorem on existence and properties of the displacement u.

Theorem 2 Let F be a locally integrable function on R equal to zero on (—o0,0). The
displacement u as a solution to (6) - (9) is given by

u(x,t)=F(t)xP(x,t), x€[0,1],7>0.

The function P is determined by (x € [0,1],7 > 0)

_ i . # —iT\ o2 —im

P = o | <D (oM (g ) s (s (g )
.

€ dq

q

M g sinh (g 7)) )

+ i [Res (P (x,s)e”,s,) +Res (P (x,5)e”,5,)], (16)
n=1

where M is given by (12) and

D (qe*'™) = qM (qeii”) sinh (kgM (ge*'™)) + K cosh (kgM (qeii”)) .
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The residues are given by

Res (P (x,s)e”,s,) = M(s) SISTJ(CT;SM (s)) e , (17)
ds

S=S8p

where f is given by (15) and s,, n € N, are zeros of (15). Function u is continuous on

[0,1] % [0,00).

For the proofs of Proposition 1 and Theorem 2 we refer to [6, 7].

4 Numerical examples

The aim of this section is the qualitative analysis of the behavior of a displacement u ob-
tained as a solution to (6) - (9) in the special case of force F. The existence and the form of
u are given in Theorem 2. In order to study creep, we chose the force, acting on the body
attached to the rod’s end, to be the Heaviside function, i.e. F = H. We fix the parameters
describing the rod: a = 0.1, b = 0.9, a = 0.8 and give plots of u for different values of the
ratio between the masses of rod and particle s := k.

Figures 1 and 2 present the long-time behavior of displacement u for different values
of . Itis evident that the oscillations of the system rod-body are damped, since the material
is viscoelastic. One sees that there is no dependence of the finite value of displacement in
creep on the value of the mass ratio s, i.e. for any s if F = H then lim,_,eu (x,7) = x,
x€[0,1].

u(x,r)
1.2

1.0

N
/\/w

0.6 H

0.4

0.2

0.0 | | | | I
0 20 40 60 80 100

Fig. 1. Displacement u(x,) in the creep experiment for 5« = 0.5 as a function of time ¢ at x € {0.25,0.5,0.75,1}
fort € (0,100).

Figures 3 and 4 present the short-time behavior of u for different values of sz. We see
that for small times there is an influence of s on the height of the peaks such that its height
increases as s decreases. However, this is due to the inertia of the body, while for larger
times the viscoelastic properties of the rod prevails. There is also an influence of ¢ on the
width of the peaks, since as ¢ increases the width of the peak does it also. We see that
regardless of the value of s there is a delay in the starting time-instant of oscillations. This
is due to the finite wave propagation speed, since the particle (x = 1), which is subject to the
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Fig. 2. Displacement u(x,t) in the creep experiment for > = 2 as a function of time ¢ at x € {0.25,0.5,0.75, 1}
fort € (0,100).

action of the force, starts oscillating at # = 0, while the starting time-instant of the points of
the rod is greater as the point is further from the point where the force acts. The delay in
the oscillations starting time-instant increases as sz increases.
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Fig. 3. Displacement u(x,) in the creep experiment for 5c = 0.5 as a function of time ¢ at x € {0.25,0.5,0.75,1}
forz € (0,15).
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Fig. 4. Displacement u(x,?) in the creep experiment for > = 2 as a function of time 7 at x € {0.25,0.5,0.75,1}
forr € (0,15).

Figure 5 presents the plot of time evolution of displacement « for fixed point of the rod
x = 0.5 if the ratio between masses ¢ varies. Here, the parameters are: a = 0.2, b = 0.6,



Vibrations of a system: viscoelastic rod of fractional type and a body attached to therod 33

a = 0.45. Figure 5 supports previously mentioned fact that regardless of the ¢ rod creeps
to the same value of displacement.
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Fig. 5. Displacement u(x,t) in the creep experiment at x = 0.5 as a function of time ¢ € (0,100) for 5 =0.5 -
dot-dashed line, 7z = 1 - dashed line and s = 2 - solid line.
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