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Selected Problems of Nanomechanics

N. E. Morozov, B. N. Semenov

Abstract: In a study of nanoscale objects it is important to consider the growing influence of
the surface. A number of classical problems of elasticity for nanoscale structures is considered
taking into account surface stresses. The results of analysis are compared to classical results.
The effects of taking into account surface stresses on the effective stiffness of nanoporous rod
and on the stability of a plate with a circular cut in tension are investigated
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1 Introduction

A starting year for nanomechanics in St. Petersburg can be considered 2000, the year when
Zhores Alferov won his Nobel prize. Lectures that were delivered by tradition in St. Peters-
burg afterwards and were devoted to this event, aroused a serious scientific interest towards
a range of problems bounded with nanotechnology among different scientists, including
mechanicians. The study of mechanical properties of solid nanoobjects has shown that the
same range of problems as that of the objects on traditional scale can be attributed to them:
strength, fracture, defectiveness, delamination, stability, hence in order to predict their be-
havior theoretical models should be used. It is natural for mechanicians to choose classical
models for a study of materials and constructions, including respective modifications into
them, and the first problem here is defining basic parameters such as Young’s modulus and
Poisson’s ratio. Some of the results regarding ambiguity in defining Young’s modulus for a
small amount of atomic layers are given in [1, 2].
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2  On surface effects

A variety of nanomaterials possess physical properties that are considerably different from
those of usual materials. One of the explanations would be presence of surface effects, the
role of which in the case of nanoscale structures can be significant in comparison to the
classical mechanics. As a model that considers surface properties theory of elasticity with
surface stresses[3-7] can be taken. Surface stresses 7 are a generalization of surface tension,
notable in the theory of capillarity, in the case of solid materials. Within its framework
together with stress tensor ¢, defined inside the solid’s volume V' and on its surface Q,
surface stresses T act on the solid’s surface or on a part of it. Tensor 7 generalizes the scalar
surface stress known in fluid mechanics for the case of solids. Introduction of surface stress
would allow to define size effect that is typical for nanomaterials.

Mathematical investigations of surface stresses in solids and fluids are to be found in
the works by Laplace, Young, Gibbs et al., see, for example, surveys in [8,9]. Equilibrium
equations and boundary conditions for a linearly elastic body with surface stresses are as
follows in [3-8]

V.-c+pf=0inV
(1)
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In (1) o are stresses, V is a differential operator in three dimensions,p is density, f are
mass forces, n is a normal to a surface of a body, Q = dV = Q;UQ,UQg, at Q, the
displacements ug are given, Q is exposed to forces ¢, meanwhile g is also exposed to
surface stresses T Vy is a surface operator of a gradient, connected with V by Vg =V — na%,
z1s a coordinate counted by a normal to a surface Q. Stress tensors and surface stress tensors

in (1) are given by
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Here € is a bulk strain tensor, & is a surface strain tensor, ug = ul| Qs is a displacements
vector at Qg, A=I—n®n, I is a unity tensor in three dimensions, A and pu are Lamé
parameters, A5 and uS are surface Lamé parameters, Ty is a residual surface stress.
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3 Effective Stiffness Parameters of a Nanoporous Rod

Let’s consider a problem of tension of a linear elastic rectilinear rod with a circular cross-
section having a radius R. Consider that paralleled to the rod axis there exist rectilinear n
cylindrically shaped pores with an equal radius r with a total area of their cross sections
equal to

S = mnr’ (5)

Let an equally distributed load act on ends of the rod being statistically equivalent to
forces P. By designating Young modulus as E, an effective longitudinal modulus of a rod
with pores Ej can be given as follows:

E;=E(1—9) (6)

Here ¢ = S/F is porosity, F = wR? is a total area of the rod’s cross-section including the
area of the pores. Obviously the effective longitudinal E; does not depend on the quantity
of pores in it but only on the total area of their cross-sections.

The effective elastic modulus with taken into account surface stresses Eg can be ex-

pressed as

2nrn 2nrn

Ei =E(1—¢)+Es — Ej + Es

(N

or considering (5)

2V'S
2/7F
Here Es = 0., /€. > 0 is a surface analogue to Young modulus dimensioned as N/m, 0., €,
designate longitudinal components of stresses and surface strains.

Hence taking into account the surface effect allows obtaining a relation of effective
elasticity modulus of a rod with pores Eg on a quantity of pores n. Moreover a small
quantity of pores with a large area of cross-section weakens the rod (its stiffness becomes
less than that of the rod made of isotropic material), however having the same total area
of the pores’ cross-section, a rod becomes the stiffer the more pores it contains (the less is
radius of the pores).

Vn (®)

E; =E(1—@)+Es

4 A plane problem for a circular nanoscale hole in a plate (Kirsch problem)

Another problem, considered in this work and demonstrating that consideration of surface
stresses has a significant impact on the mechanical properties of nanoobjects is a plane
problem for a circular nanoscale hole.

Let’s consider a respective problem of elasticity theory: an elastic plane with a circular
cut with a radius R is under single-axis tension applied at infinity (Kirsch problem) of the
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value p and of additional surface stresses. Formulas for the surface [3, 4] and for bulk linear
elasticity in the case of plane deformation give

_ &S
O = Op + (As+2Us)€pp, O3 = Of + AsEipg,
Opp = (A +21)€5o A&} 0, (A +21)EFAEY 9)
Orp = 2UEHAE}, 633/1(8,@@,
Here (r,¢@) is a polar coordinate system with the origin coinciding with the center of the
cut, Gg is a residual surface stress corresponding to an unloaded body, G(,S,(p and e(Spq, are
circumferential surface stresses and strains, 63S3 is a normal to surface tensor component of
surface stresses, 0;; and &;; are components of bulk stress and strain tensors, Ag and pig are
surface elastic moduli, analogous to Lamé parameters A and u for bulk isotropic elasticity.
Boundary conditions at the boundaries of the cut » = R will be given as:
S
o 1 8
09
Oy———=0 + =
rr R I r(p R a(P
while the conditions at infinity in Cartesian coordinate system will be (x; = rcos @, x, =
rsin@):

=0,

lim o =0, hmo,,—O (i,j=1,2), exept lim 011 = p, (10)
r—soo

r—yoo
By solving the problem (9)-(10) using the method of complex functions we get for the
exterior of the circle »r > R [11]

Opr(1, ) = R+M rz . [1 — (1 — %%IIMKD 1:—224- < - <3—ﬁm) R%) cosZ(p} )
Opo(r,9) = chng2 +5 {1 + (1 AfngKg) B (1 + (3— %) R%) cosZ(p] :

2 4
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(1)
with M = (Ag+2us) /20, Kk =3—V
Equalities (11) show a characteristic relation of stresses on the size of a nanoscale hole.
Moreover, equalities (11) result in consideration of surface stresses decreases concentration
of stresses in the vicinity of the cut if M > 0. An analogous effect is given by the remaining
surface stress G(‘)g , that is actually a surface energy needed for creation of a surface unit. This
is fair, for example, in the case of fcc metals M ~ (10719 —107%)m, 65 ~ 1N/m [5], and in
this case the first summand in the second formula (11) obtains the order of 100M Pa if the
radius of the hole is ¢ ~ 10nm. This means that having stress values at infinity p = 100M Pa,
the input of the residual stresses Gg into strained state at the hole boundary is comparable to
the input of a homogeneous strained state, which decreases significantly the concentration
of stresses in the vicinity of the cut. This means in particular that a object with nanoscale
cut is able to bear a significantly larger load till the moment of elasticity loss.
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5 Stability of an infinite plate with a circular cut with consideration
of surface effects

In fact energetic method introduced by S.P. Timoshenko can be applied in order to define
the critical stress, when the loss of plane form of a plate occurs [13]:

U=Ww,
U =257 [ [(&aw)? = (1= v)L(w,w)] rdrd g, (12)

2 2
h 2@ oo a 1(2 dw 9
Wk {g,,r (22) + o0t (22) +2Tr¢r§:ag)}drd(p,
where U is potential energy of bending strains,W is the work of the forces in a mid plane
of the plate accumulated to the moment of stability loss on extra displacements, caused by

buckling, w is deflection of a buckled plate, v is the Poisson’s ratio, D = Eh®/12(1 — v)? is
a plate’s cylindric stiffness, 4 is its stiffness,

Lomw) 2 | 10w dw 1 Pwow 1w\ 2 Ow ow 1 (ow)?
W)= radr2 dr  r20@2dr2 r2\drde Pordpde r*\do

Searching for the function of deflection in the formw(r, @) = Y3 , “ cos ¢ and having
coefficients a; defined from the boundary conditions, we can obtain an expression for the
critical load P, causing the stability loss, using the formula (20) and taking into considera-
tion surface stresses at the hole.

In Table 1 critical loads P,, are given in relation to critical loads in which surface stresses
P., 145 are not taken into consideration for various thicknesses of the plate with the follow-
ing parameters of the problem: R = 15nm, E = 10''N/m?, 6§ = IN/m, M = 5-10"°m,

v=1/3

Table 1.

h 0.5nm | 1 nm | 10nm

Pch 0.325 | 0.795 | 0.951
cr_clas

Hence taking surface stresses into consideration results in a significant increase of crit-
ical loads.
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