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Construction of the Second-Order Fuchsian Systems with
Nilpotent Irreducible Residue Matrices

V. V. Amelkin, M. N. Vasilevich

Abstract: One inverse problem of analytic theory of linear differential equations is considered.
Namely, the second-order Fuchsian systems with four critical points and nilpotent irreducible
matrices-residua are constructed.
Keywords: Fuchsian system, nilpotent irreducible residue matrix, monodromy matrix, expo-
nential monodromy matrix.

1 Introduction

Suppose X =CP1 is a complex projective line, a j, j = 1,2,3,4 are arbitrary points from X ,

and M̄ =
4∪

j=1

a j. On the open set M = {CP1\M̄} we observe Fuchsian system

dY = ωY, (1)

where Y is a square matrix of order 2×2, while Ω is differential 1-form defined as

ω =
4

∑
j=1

U jd ln
(

x−a j

x0 −a j

)
. (2)

It assumed that matrices U j, of order 2× 2, are not dependent on x. Matrices U j, called
matrix-residue, satisfy the following condition [4]

4

∑
j=1

U j = 0. (3)
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Denote with π1(M,x0) a fundamental group of complex analytical multiplicity M, where
x0 ∈M. Let Φ(x), be a branch of fundamental solution of Fuchsian system (1) (Φ(x0)=Φ0),
which is transformed into another branch Φγ j(x) during analytical extension along loop
γ j,γ j ∈ π1(M,x0). Thereby, matrix functions ϕ(x) and Φγ j(x) are connected by the equality
Φγ j(x) = Φ(x)Vj. Matrices Vj belong to a group GL(2;C) of nonsingular complex matrices
of order 2×2. It is obvious that Vj = Φ−1

0 Φγ j(x0).
Matrices Vj, j = 1,2,3,4, called monodromy matrices, have to satisfy the following

condition
4

∏
j=1

Vj = E, (4)

where E denotes unity matrix. Let us note that matrices Vj, that satisfy condition (4),
generate a multiplicative group refered to as monodromy group (see [4]).

Related to Vj, j = 1,2,3,4 matrices are exponential monodromy matrices Wj, j = 1,2,3,4,
whereby the following equality is valid

Vj = e2πiWj , (5)

for j = 1,2,3,4, where i is an imaginary unit.
It was proved (see for example [9]) that eigenvalues of exponential monodromy matri-

ces and residue matrices of system (1) coincide. This fact will be used in this paper.

2 Statement of the problem

Let
χ : π1(M,x0) 7→ GL(2;C), (6)

is a homomorphism called monodromy or monodromy representation of system (1).
The Riemann-Hilbert problem [5]: Let monodromy (6) is given. The question is whether

there exist a system (1)-(3), for the given points a1,a2,a3,a4 whose fundamental solution
matrix is realized by the homomorphism (6)?

According to the results presented in [6] it can be concluded that this problem always
has a solution. However, in a general case, for arbitrary points a1,a2, . . . ,an and arbitrary
system (1) of order m ≥ 3, there is a monodromy (6) for which does not exist Fuchsian
system that solves stated problem.

According to the formulation of the problem, it can be concluded that proof of the
existence of the system with given properties is not constructive. In this paper we give
constructive solution of the stated problem, for the residue nilpotent irreducible residue
matrices, whereby none of them can be reduced to diagonal form.
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3 Preliminary results

Prilikom konstrukcije sistema oblika (1) nameće se uslov potpune (kompletne) integrabil-
nosti???? This means that differential 1-form in (2) has to satisfy the condition [2]

dω = ω
∧

ω, (7)

where
∧

denotes an operator of outer difference of matrices.
When monodromy matrices Vj are noncommutative, residue matrices U j are noncom-

mutative as well. Analogously to the proof of Lemma 1 from [1], it can be proved that
according to (7) the following equation is valid

dU j =
4

∑
k=1
k ̸= j

[Uk,U j]d ln
a j −ak

x0 −ak
(8)

where [·, ·] denotes Li product of matrices (commutator). More details about the equality
(8) can be found in [8, 9].

Without loss of generality, when choosing matrices Wj, j = 1,2,3,4, three out of four
will can be chosen to be nilpotent and of the form

Wj =

[
−µ jv j µ2

j
−v2

j µ jv j

]
, j = 1,2,3, (9)

where µ j and v j are real or complex numbers. These are chosen such that, according to
condition (4), matrix W4 is nilpotent as well.

From (9) it follows that eigenvalues of matrices Wj, j = 1,2,3 are ξ (1)
j = ξ (2)

j = 0.
Therefore, eigenvalues of matrices U j, j = 1,2,3 are equal to zero. As a consequence,
residue matrix of system (1) has to be of the following form

U j =

[
−η jθ j η2

j
−θ 2

j η jθ j

]
, j = 1,2,3 (10)

where η j,θ j are some parameters.
Since U4 = −U1 −U2 −U3 and matrices Wj, j = 1,2,3 are noncommutative, eigenval-

ues of matrix U4 have to be different from zero. However, from the condition that U4 is
nilpotent, according to (3) and (10), the following equality mast be satisfied

∆2
12 +∆2

13 +∆2
23 = 0, (11)

where
∆12 = η1θ2 −η2θ1, ∆13 = η1θ3 −η3θ1, ∆23 = η2θ3 −η3θ2. (12)
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According to (11 it follows that matrices (9) have to be given in a form that enables that
fixed branch of matrix

W4 =
1

2πi
lnV4,

where V4 = V−1
3 V−1

2 V−1
1 , has eigenvalues equal to zero. Here are examples of matrices

Wj, j = 1,2,3,4 with the specified features

W1 =

(
0 0
ν 0

)
, W2 =

(
0 µ
0 0

)
, W3 =

(
0 −µ
0 0

)
, W4 =

(
0 0

−ν 0

)
In the text that follows, without loss of generality, we will take a4 = ∞. Now, system

(1) can be written as

dY =

(
3

∑
j=1

U j

x−a j

)
Y dx (13)

It was shown in [7] that matrices U j, j = 1,2,3 from (1) satisfy the following equalities

U2
j =

(
0 0
0 0

)
, U jUk = ρUk = ρ jkE −UkU j, U jUkU j =U jρ jk (14)

σ5 = ρ123 +ρ132 = 0, σ4 = ρ123 −ρ132 = 2ρ123,

where ρ jk = σ(U jUk), ρ123 = σ(U1U2U3), ρ132 = σ(U1U3U2), while σ(T ) represents a
sum of diagonal elements of matrix T (i.e. a trace of matrix T ).

4 The N. P. Erugin system

In [7] an algorithm for constructive solution of the above mentioned problem was proposed.
It is based on five ordinary differential equations which reflect the dependence of traces of
product residue matrices of Fuchsian system on singularities. Before applying proposed
algorithm it is necessary to solve a mentioned system of differential equations which we
will call N. P. Erugin system.

In our case N. P. Erugin system boils down to the following system of differential equa-
tions

dρ12

dz
=

σ4

z
,

dρ13

dz
=

σ4

1− z
,

dρ23

dz
=

σ4

z(z−1)
,

dσ4

dz
=

2ρ13(ρ12 −ρ23)

z
+

2ρ12(ρ23 −ρ13)

z−1
(15)

where z = a3−a1
a3−a2

.
Let us note that system (15) can be obtained according to (8), if we apply a proce-

dure used in proof of Theorem 1 in paper [3]. Note that, in some occasions, N. P. Erugin
system can have a stationary solutions. Solution of this problem is fundamental for solv-
ing Riemann-Hilbert problem. The existence of stationary solutions simplifies solution of
stated problem.
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According to (15) and (12) we have that

ρ12 =−∆2
12, , ρ13 =−∆2

13, ρ23 =−∆2
23, σ4 = 2∆12∆13∆23. (16)

If matrices in (10) are commutative, the above equalities become

∆12 = ∆13 = ∆23 = 0, (17)

which implies that N. P. Erugin system (15) has a unique solution

ρ12 = ρ13 = ρ23 = σ4 = 0.

Theorem 1 If residue matrices (10) in system (13) are not commutative and satisfy the con-
dition (11), then system of differential equations (15) does not have a stationary solution.

Proof. Suppose that system (15) has a non-stationary solution. In that case we have that
σ4 = 0. Then according to (16) at least one of ∆12, ∆13 or ∆23 must be zero. Suppose that
∆23 = 0. But, then ρ23 = 0, and according to (15) and (11) we have also ρ12 = 0 and ρ13 = 0.
So the equality (17) is obtained, which implies that matrices in (100 are commutative. This
is in contradiction with the condition of Theorem 1. �

5 Non-stationary solutions of the N. P. Erugin system

Lemma 1 System of the first three equations in (15) has a solution which can be repre-
sented by the following power series that are convergent in the area |z|< 1,

ρ12 = −A0 +
+∞

∑
n=1

(
n−1

n
An−1 −An

)
zn,

ρ13 = −
+∞

∑
n=2

n−1
n

An−1zn, (18)

ρ23 =
+∞

∑
n=0

Anzn

σ4 =
+∞

∑
n=1

((n−1)An−1 −nAn)zn,

where Ak are complex numbers and A0 ̸= 0.

Proof. By the immediate check-out one can verify that power series defined in (18) repre-
sent, formally, a solution of the first three equations in system (15).
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Concerning the statement that power series converge in the radius |z| < 1, it is enough
to integral the first two equations in (15) from 0 to z, and then use the formulas of Cauchy-
Hadamard for determining radius of convergence of power series. Also, note that according
to (11) and (16), we have that

ρ23 =−ρ12 −ρ13, σ 2
4 = 4ρ12ρ13ρ23.

Lemma 2 System of differential equations (15) has non-stationary solutions that can be
represented in the form of power series of type (18), that converge in the radius |z| < 1, if
coefficients of these series satisfy the following recurrent relations

An =
1
n2 {(n−1)[(2n−1)An−1 − (n−2)An−2 +

+ 2[A0(2
n−2
n−1

An−2 −An−1)+A1(2
n−3
n−2

An−3 −An−2)+ . . .

+ An−3(2
1
2

A1 −A2)−An−2A1 −An−1A0]− [
1
2

A1(2An−2 −
n−3
n−2

An−3)+ (19)

+ . . .+2
n−2
n−1

An−2A1 +2
n−1

n
A0]}, n = 1,2,3, . . .

The proof of the Lemma is conducted by the method of undetermined coefficients,
whereby we take into account that fourth equation in (15), after simplifying, can be repre-
sented in the following form

z(z−1)
dσ4

dz
= 2(ρ13(ρ23 −ρ12)+ρ23(ρ12 −ρ13)z).

6 Main result

In order to solve the problem stated in Section 2, we will look at the fundamental solution
matrix of system (13) in the form of the following sequence (see [9])

Φx0(x) = E +
∞

∑
ν=1

(1,2,3)

∑
j1,..., jν

Lx0(a j1 , . . . ,a jν | x)U j1 . . .U jν , (20)

where ∑(1,2,3)
j1,..., jν contains 3ν elements which are obtained when indexes j1, . . . , jν , indepen-

dently from each other, take values 1,2,3 with the coefficients

Lx0(a j1 |x) =
∫ x

x0

dx
x−a j1

= ln
(

x−a j1

x0 −a j1

)
, . . . ,

Lx0(a j1 ,a j2 , . . . ,a jν |x) =
∫ x

x0

Lx0(a j1 ,a j2 , . . . ,a jν−1 |x)
x−a jν

dz.
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We form Residue matrices U j, j = 1,2,3 in (13), so that the following inequality is valid
(see [9])

Vj = E +
∞

∑
ν=1

(1,2,3)

∑
j1,..., jν

Pj(a j1 , . . . ,a jν |x0)U j1 . . .U jν , j = 1,2,3 (21)

where

Pj(a j1 |x0) =

{
2πi, of j = j1

0, if j ̸= j1
,

Pj(a j1 , . . . ,a jν )|x0) =
(2πi)ν

ν!
, if j1 = · · ·= jν = j,

Pj(a j1 , . . . ,a jν )|x0) =
∫ x0

a j

(
Pj(a j1 , . . . ,a jν−1 |x0)

x0 −a jν
−

Pj(a j2 , . . . ,a jν |x0)

x0 −a j1

)
dx0,

where series in (21) is entire function coefficient matrices from (13).

Theorem 2 System (13), with nilpotent irreducible residue matrices that can not be diag-
onalized and satisfy condition (3), whose solution is given in the form defined by (20) and
contains monodromy matrix (6), exists if |z|< 1.

Proof. As is known (see [9]), matrix (20) is normed in the point x0, which is defined in
the fundamental solution matrix of system (13). Since matrices Wj are nilpotent, formulas
(5) become

Vj = e2πiWj = E +2πiWj, j = 1,2,3,

V∞ = V−1
3 V−1

2 V−1
1 = e2πiW∞ = E +2πiW∞. (22)

According to (22) it can be concluded that fundamental solution matrices U j, j = 1,2,3 of
system (13) will have monodromy (22), if the following is valid∫

γ j

dΦx0(x) = Φx0(x)
∣∣∣x0e2πi

x0
= Φx0(x0e2πi)−Φx0(x0) =

= Φx0(x0)Vj −E =Vj −E = e2πiWj −E = 2πiWj. (23)

According to (22) and (23) follows

Wj =U j +
+∞

∑
ν=2

(1,2,3)

∑
j1,..., jν

P∗
j (a j, . . . ,a jν |x0)U j1 . . .U jν , (24)

where
P∗

j (a j, . . . ,a jν |x0) =
1

2πi
Pj(a j, . . . ,a jν |x0), j = 1,2,3
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Since eigenvalues of matrices Wj,U, j, j = 1,2,3, W∞ and U∞ are equal to zero, then hav-
ing in mind results obtained in [7], matrices U j, j = 1,2,3 in system (13 should have the
following form

U j = a jW1 +βW2 + γ j[W1,W2], (25)

where

W1 =

(
0 0
1 0

)
, W2 =

(
0 1
0 0

)
, [W1,W2] =W1W2 −W2W1 =

(
−1 0

0 1

)
.

According to (24) and (14), it follows that trace σ(U jWk), of product of matrices U j and
Wk, j = 1,2,3 and k = 1,2,3, can be represented in the form of the following series

σ(U jWk) = σ jk(ρ12,ρ13,ρ23,ρ123) (26)

over integer powers ρ12,ρ13,ρ23,ρ123, that converges for each finite value of arguments (see
[7]).

Having in mind conditions given in Theorem 2, we can take

[W1,W2] ̸=
(

0 0
0 0

)
(27)

By multiplying equality (25) with matrices W1 and W2, defined by (9), from left side,
the following system is obtained σ(U jW1) = α jµ2

1 −β jν2
1 +2γ jµ1ν1,

σ(U jW2) = α jµ2
2 −β jν2

2 +2γ jµ2ν2, j = 1,2,3
(28)

Left sides of equations (28) are series defined by (26).
Matrices U j from (25) can be written as

U j =

 −γ j α j

β j γ j

 , j = 1,2,3 (29)

Since eigenvalues of these matrices are zero, that they have to satisfy the following equa-
tions

γ2
j +α jβ j = 0, j = 1,2,3 (30)

Denote by σ j1 = σ(U jW1) and σ j2 = σ(U jW2). Then α j, β j and γ j can be found from the
following system of equations

µ2
1 α j −ν2

1 β j +2µ1ν1γ1 = σ j1,

µ2
2 α j −ν2

2 β j +2µ2ν2γ j = σ j2,

α jβ j + γ2
j = 0.
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Thus we have

γ j =
1
k2

1
(µ2ν2σ j1 +µ1ν1σ j2 ± k2

√σ j1σ j2), α j = ∆1/∆, β j = ∆2/δ , (31)

where k1 = µ1ν2 −ν1µ2 and k2 = µ1ν2 +ν1µ2. According to (27), k1 and k2 are not equal
to zero, and the following is valid

∆ =−k1k2, ∆1 = 2ν1ν2k1γ j +σ j2ν2
1 −σ j2ν2

1 , ∆2 =−2µ1µ2k1γ j +σ j2µ2
1 −σ j2µ2

1 .

Finally, according to (31) we can determine elements of matrix defined in (29). From
Lemma 1 and 2, eqn. (26), and equality ρ123 =

1
2 σ4, it follows that fundamental matrix (20)

which represents the solution of systems (13) and (3), has monodromies, defined by (6), on
set M if |z|< 1. �.
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