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Construction of the Second-Order Fuchsian Systems with
Nilpotent Irreducible Residue Matrices

V. V. Amelkin, M. N. Vasilevich

Abstract: One inverse problem of analytic theory of linear differential equations is considered.
Namely, the second-order Fuchsian systems with four critical points and nilpotent irreducible
matrices-residua are constructed.

Keywords: Fuchsian system, nilpotent irreducible residue matrix, monodromy matrix, expo-
nential monodromy matrix.

1 Introduction

Suppose X = CP! is a complex projective line, a i,J =1,2,3,4 are arbitrary points from X,

4
and M = |_J a;. On the open set M = {CP"\M} we observe Fuchsian system
j=1

dYy = oY, (D

where Y is a square matrix of order 2 x 2, while Q is differential 1-form defined as

4 .
w:ZU,dln(x “f_). @)

It assumed that matrices Uj, of order 2 x 2, are not dependent on x. Matrices U}, called
matrix-residue, satisfy the following condition [4]

4
Y ui=o. 3)
j=1
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Denote with 7, (M, x) a fundamental group of complex analytical multiplicity M, where
xo € M. Let ®(x), be a branch of fundamental solution of Fuchsian system (1) (®(xo) = o),
which is transformed into another branch @, (x) during analytical extension along loop
Yj,Yj € T (M, xo). Thereby, matrix functions ¢ (x) and ®, (x) are connected by the equality
®y,(x) = @(x)V;. Matrices V; belong to a group GL(2;C) of nonsingular complex matrices
of order 2 x 2. It is obvious that V; = ® 1<1>yj (x0)-

Matrices V;, j = 1,2,3,4, called monodromy matrices, have to satisfy the following

condition
4

[1vi=E. C))

j=1

where E denotes unity matrix. Let us note that matrices V;, that satisfy condition (4),
generate a multiplicative group refered to as monodromy group (see [4]).

Related to V;, j=1,2,3,4 matrices are exponential monodromy matrices W;, j =1,2,3,4,
whereby the following equality is valid

Vj — eZm‘Wj’ (5)

for j =1,2,3,4, where i is an imaginary unit.
It was proved (see for example [9]) that eigenvalues of exponential monodromy matri-
ces and residue matrices of system (1) coincide. This fact will be used in this paper.

2 Statement of the problem

Let
x: m(M,x)— GL(2;C), (6)

is a homomorphism called monodromy or monodromy representation of system (1).

The Riemann-Hilbert problem [5]: Let monodromy (6) is given. The question is whether
there exist a system (1)-(3), for the given points a;,as,as,as whose fundamental solution
matrix is realized by the homomorphism (6)?

According to the results presented in [6] it can be concluded that this problem always
has a solution. However, in a general case, for arbitrary points a;,ay,...,a, and arbitrary
system (1) of order m > 3, there is a monodromy (6) for which does not exist Fuchsian
system that solves stated problem.

According to the formulation of the problem, it can be concluded that proof of the
existence of the system with given properties is not constructive. In this paper we give
constructive solution of the stated problem, for the residue nilpotent irreducible residue
matrices, whereby none of them can be reduced to diagonal form.
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3 Preliminary results

Prilikom konstrukcije sistema oblika (1) namece se uslov potpune (kompletne) integrabil-
nosti???? This means that differential 1-form in (2) has to satisfy the condition [2]

do =0 /\ o, (7)

where A denotes an operator of outer difference of matrices.

When monodromy matrices V; are noncommutative, residue matrices U; are noncom-
mutative as well. Analogously to the proof of Lemma 1 from [1], it can be proved that
according to (7) the following equation is valid

dU in/le%_” @)
j — k-Yj n
! k=1 ! X0 — dg
k#j
where |-, -] denotes Li product of matrices (commutator). More details about the equality

(8) can be found in [8, 9].
Without loss of generality, when choosing matrices W;, j = 1,2,3,4, three out of four
will can be chosen to be nilpotent and of the form

I -
where ; and v; are real or complex numbers. These are chosen such that, according to
condition (4), matrix Wy is nilpotent as well.
From (9) it follows that eigenvalues of matrices W;,j = 1,2,3 are 5}1) =¢ }2) =0.
Therefore, eigenvalues of matrices U;,j = 1,2,3 are equal to zero. As a consequence,
residue matrix of system (1) has to be of the following form

—n;9; M} :
U; = S, j=1,2,3 (10)
’ [ ~6; n;6;
where 1, 0; are some parameters.
Since Uy = —U; — U, — U3 and matrices W, j = 1,2,3 are noncommutative, eigenval-
ues of matrix Us have to be different from zero. However, from the condition that Uy is
nilpotent, according to (3) and (10), the following equality mast be satisfied

A}, +AT;+ A3 =0, (11)

where
Ap=m6—1m01, Ap=m06;—1361, Ay =10;—136,. (12)
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According to (11 it follows that matrices (9) have to be given in a form that enables that

fixed branch of matrix |
Wi = —InVj,
27i

where V, = V3’1V2’1V1’1, has eigenvalues equal to zero. Here are examples of matrices
W;, j=1,2,3,4 with the specified features

/(00 (0 (0 —pu (00
i=(Vo) m(0 ) we(o h) me(0)

In the text that follows, without loss of generality, we will take a4 = co. Now, system

(1) can be written as
3 U;
dy =Y —— | vdx (13)
jzlx—aj

It was shown in [7] that matrices U}, j = 1,2, 3 from (1) satisfy the following equalities

0 0
Uj2: < 0 0 >, UjUk:pUk:pjkE—UkUj, UjUkUj:Ujpjk (14)

05 = P13 +p132 =0, 04 = P123 — P132 = 2P123,

where Pjk = G(UjUk), P123 = G(U1U2U3), P132 = G(U1U3U2), while G(T) represents a
sum of diagonal elements of matrix T (i.e. a trace of matrix 7).

4 The N. P. Erugin system

In [7] an algorithm for constructive solution of the above mentioned problem was proposed.
It is based on five ordinary differential equations which reflect the dependence of traces of
product residue matrices of Fuchsian system on singularities. Before applying proposed
algorithm it is necessary to solve a mentioned system of differential equations which we

will call N. P. Erugin system.
In our case N. P. Erugin system boils down to the following system of differential equa-
tions

dpip _ 04 dpiz _ 04  dpy _ O4 doy _ 2pi3(Pp12 — p23) . 2p12(p23 — P13)

dz z’ dz  1-7° dz z(z—1) dz z z—1
15)
where z = 271
Let us note that system (15) can be obtained according to (8), if we apply a proce-
dure used in proof of Theorem 1 in paper [3]. Note that, in some occasions, N. P. Erugin
system can have a stationary solutions. Solution of this problem is fundamental for solv-
ing Riemann-Hilbert problem. The existence of stationary solutions simplifies solution of

stated problem.
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According to (15) and (12) we have that

2
P12 == _A1277

P13 = —A%37 P23 = —A%3, 0y = 2A12A13A23. (16)

If matrices in (10) are commutative, the above equalities become

App =A13=A»3 =0, (17)

which implies that N. P. Erugin system (15) has a unique solution

P12 =p13 =p23 =04 =0.

Theorem 1 Ifresidue matrices (10) in system (13) are not commutative and satisfy the con-
dition (11), then system of differential equations (15) does not have a stationary solution.

Proof. Suppose that system (15) has a non-stationary solution. In that case we have that
o4 = 0. Then according to (16) at least one of A, Az or Apz must be zero. Suppose that
A3 =0. But, then py3 =0, and according to (15) and (11) we have also pj; =0 and p;3 =0.
So the equality (17) is obtained, which implies that matrices in (100 are commutative. This
is in contradiction with the condition of Theorem 1. H

5 Non-stationary solutions of the N. P. Erugin system

Lemma 1 System of the first three equations in (15) has a solution which can be repre-
sented by the following power series that are convergent in the area |z| < 1,

P12

P13

P23

O4

= /n—1 "
Ao+ Y (A=A )
n=1

Ap12”, (18)

~+oo
Y A"
n=0
oo

Y (n—1)A,_1 —nA,) 2",

n=1

where Ay are complex numbers and Ay # 0.

Proof. By the immediate check-out one can verify that power series defined in (18) repre-
sent, formally, a solution of the first three equations in system (15).
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Concerning the statement that power series converge in the radius |z| < 1, it is enough
to integral the first two equations in (15) from O to z, and then use the formulas of Cauchy-
Hadamard for determining radius of convergence of power series. Also, note that according
to (11) and (16), we have that

P23 = —pP12 — P13, o7 = 4p12p13P23-

Lemma 2 System of differential equations (15) has non-stationary solutions that can be
represented in the form of power series of type (18), that converge in the radius |z| < 1, if
coefficients of these series satisfy the following recurrent relations

A, = 2{(n—1)[(2n—1)An,1—(n—Z)A,,,2+
n—2 n—73
+ 2[A0(2n7 lAn—Z_An—l)+A1(2mAn_3—An_2)+...
1 1 n—3
+ An—3(2§Al —Az) —Ap2A1 —Ap_1Ag] — [2A1(2An 2— 2An 3)+ (19)

_2 1
n ...+2”—1An,2A1+2”—A0]}, n=1,273,...
n— n

The proof of the Lemma is conducted by the method of undetermined coefficients,
whereby we take into account that fourth equation in (15), after simplifying, can be repre-
sented in the following form

doy
2(z—1)—— iz =2(p13(p23 — p12) + p23(P12 — P13)2)-

6 Main result

In order to solve the problem stated in Section 2, we will look at the fundamental solution
matrix of system (13) in the form of the following sequence (see [9])

o (1,2,3)
=E+), Z on ajys---saj, [ X)Uj - Uy, (20)
v=1j1,...,
where Z ; contains 3" elements which are obtained when indexes ji,..., jy, indepen-

7777

dently from each other, take values 1,2,3 with the coefficients

Y dx xX—a;
_ _ ji

Ly (ajlx) = / =In{ —2),...,
xox—ajl X()—Llj]

*Lola;,ai,...,a; , |x
on(aj1>aj27'-‘aajv|x) = / XO( L : 4/v—l| )
X0

dz.

x—ajv
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We form Residue matrices U;, j = 1,2,3 in (13), so that the following inequality is valid
(see [9])

o (1,2,3)
Vi=E+Y Y Pilaj,....a;x0)U;...U;,  j=123 1)
V=1j1,..,Jv
where
27Ti, ij:jl
Pj(ajl |.X()) = { 0 lf]#]l
(2mi)" ... .
Pi(aj,....a5)l0) =~ ifji==jv =,
Yo (Pi(aj,...,a; Pi(aj,,...,a;
P./'(aj1a---,a.,'v)|x0) = / < J(ajl;c _a{v71|x0)_ ](ajz = é]v’x0)>dx()’
a; 0 —dj, X0 —aj

where series in (21) is entire function coefficient matrices from (13).

Theorem 2 System (13), with nilpotent irreducible residue matrices that can not be diag-
onalized and satisfy condition (3), whose solution is given in the form defined by (20) and
contains monodromy matrix (6), exists if |z| < 1.

Proof. As is known (see [9]), matrix (20) is normed in the point xy, which is defined in
the fundamental solution matrix of system (13). Since matrices W; are nilpotent, formulas
(5) become

vV, = &#™i=E2miw;, j=1,2,3,
Vi = V'Vl =W = E 4 27iW. (22)

According to (22) it can be concluded that fundamental solution matrices U;, j = 1,2,3 of
system (13) will have monodromy (22), if the following is valid

27i .
dCon (x) - q)xo (X) o = q)xo (erZM) - q)xo (XO) =

X0
Yi

= @, (x0)V,—E=V,—E =™ —E =2miW,. (23)

According to (22) and (23) follows

+o0 (]72’3)
Wi=U;+ Y Y Piaj,....a;lx)Uj ..Uy, (24)
V=2 ji,fv
where |
P}k(aj,...,ajv|x0) = —Pj(aj,...,aj,|x), j=1,273

27i
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Since eigenvalues of matrices W;,U j, j = 1,2,3, W and U, are equal to zero, then hav-
ing in mind results obtained in [7], matrices U;, j = 1,2,3 in system (13 should have the
following form

Uj = ajWh + BW + 1, [Wr, Wa), (25)
where
— 0 0 — 0 1 — o -1 0
W1=<1 O)’ W2:<0 O)v [WhWZ]:WlWZ—WZWl:( 0 1>.

According to (24) and (14), it follows that trace o (U;Wj), of product of matrices U; and
Wi, j=1,2,3 and k = 1,2, 3, can be represented in the form of the following series

o (U;jWi) = oji(p12, P13, P23, P123) (26)

over integer powers P12, P13, 023, P123, that converges for each finite value of arguments (see

[7D.

Having in mind conditions given in Theorem 2, we can take

[mw@#(g g) @7

By multiplying equality (25) with matrices W; and W, defined by (9), from left side,
the following system is obtained

o(UWi) = oyui — B Vi +2y;u1vi,

(28)
o(UjWa) = a3 — Bjvi +2vt2v2,  j=1,2,3
Left sides of equations (28) are series defined by (26).
Matrices U; from (25) can be written as
vi= Y 7], =123 (29)
Bi v

Since eigenvalues of these matrices are zero, that they have to satisfy the following equa-
tions

v+aBi=0, j=123 (30)
Denote by 01 = o(U;W) and 6/ = 6(U;W>). Then «;, B; and y; can be found from the
following system of equations

uio;—viBi+2mvin =op,

uyo —vi B+ 21 vay; = o,

(Xjﬁj—i-’}/jz =0.
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Thus we have
1

V= 2 (levaOi + mviop £hy/Gji0p), oy =A1/A, Bi=M&/6, (D)
1

where k; = U vo — Vil and kp = 1 vo + vilp. According to (27), k; and k; are not equal
to zero, and the following is valid

A= —kiky, A1 =2viVok1 Y+ 0)pVi — O Vi, Ay = =2 ok ¥j + G i — G

Finally, according to (31) we can determine elements of matrix defined in (29). From
Lemma 1 and 2, eqn. (26), and equality pj23 = %64, it follows that fundamental matrix (20)
which represents the solution of systems (13) and (3), has monodromies, defined by (6), on
set M if [z] < 1. .
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