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Remarks on Sequences Generated by Harmonic Numbers

A. S. Stevanovié, I. Z. Milovanovi¢, E. I. Milovanovi¢

Abstract: A monotonicity of sequences generated by the harmonic numbers is proved in this
paper.
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1 Introduction

A sequence of harmonic numbers (H,),n € Ny, is defined as

0.

Hn:1+l+---+l, Hy
2 n
This sequence plays an important role in solving numerous problems in combinatorial math-
ematics as well as during analysis of complexity of numerical algorithms (see for example
[1,2,3,4]).
Let (x,),n € Ny be an arbitrary sequence of real numbers. An operator of k-th difference
is defined as

0 1 k k—1
A"xp = xp, A" Xy = Xpy1 — X, Atxy, = A(A xn)a

for each k € Ny and n € Ny. A real sequence (x,),n € Ny, with the property Afx, >0, (Afx, <
0), is said to be k-convex (i.e. k-concave). In the special cases, for k = 0, a sequence (x,)
is non negative (non positive), when k£ = 1 it is monotone non decreasing (non increasing),
and for k = 2 it is convex (concave).

In this paper we are going to determine the monotonicity of two sequences generated
by the harmonic numbers.

Manuscript received January 22, 2013; accepted May 14, 2013.
A. S. Stevanovi¢ is with Mechanical Technical School, 15 may, Ni§, Serbia; 1. Z. Milovanovi¢, E. 1.
Milovanovi¢ are with the Faculty of Electronic Engineering, Ni§, Serbia

107



108 A. S. Stevanovié, 1. Z. Milovanovié, E. I. Milovanovié

2 Main result
Lemma 1 Let H = (H,),n € Ny, be a sequence of harmonic numbers. Then, for each

k,k € N, the following equality

(=D (k=1)!
(n+1)(n+2)---(n+k)

A*H, = ey

is valid.

Proof. We will prove Lemma 1 by mathematical induction. Since
1
PR
we have that equality (1) holds when £ = 1. Now, suppose that (1) is valid for some fixed
k:=k,k € N. In that case, for k := k+ 1 we have

- B (=) (k—1)! _
A = A(AkH,,)—A<(n+1)(n+2)...(n+k)> N

(=D (k—1)! GRS VL
(n+2)(n+3)---(n+k+1) (n+1)(n+2)---(n+k)

AH, = Hyy) —H, =

B (=D (k—1)! 1 I
 (n+2)(n+3)--(n+k) <n+k+1_n+1>_
(—1)*k!
(n+1)(n+2)---(n+k+1)

O
The important corollary of Lemma 1 is
Corollary 1 For k =2 and k = 3 the following two inequalities are valid
1
AHy=————— <0 2
" T D) @
and
AH, = 2 >0 3)
"(n+1)(n+2)(n+3)

foreachn € N.
Now, according to sequence H = (H,),n € Ny, we will define sequences (a,),n € Ny and
(bn),n € Ny, as
H,.,—H —
ap = ag=0, b= gy =0, 0)
n n

for each n € Ny. The following result is valid for the sequences (a,) and (b,), n € No.
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Theorem 1 The sequences (a,) and (by,), n € Ny, defined by (4), are monotone decreasing
and increasing, respectively.

Proof. From the inequality (2) and equality

n 2
kazﬂk = Y kY (-1) (?)Hm,:
k=1 i=0

k=1

2 ) n—2+i
— an+2—(n+1)H,,+1—{—HI—I—Z(—l)l <l> Z Hk+27i:
i=0 k=i+1

= n(Hp2—Hy) = (n+1)(Hpy1 — 1),
we have that
H,.»,—H, H,—H
<
n+1 n
so we conclude that the sequence (ay,), n € Ny, id monotone decreasing.
Now we will prove that sequence (b,,),n € Ny is monotone increasing. We have that for
each n,n > 1 the following equality is valid

n n 3 /3
Y iH, = Y kY (-1) (1) Hi3 =
k=1 i=0

k=1

)

= nHy3—2n+1)Hpo+ (n+1)Hyp 1 +Hy—H) =

Hy 3 —H, H, > —H,

— (2 1 1) ——
n+2 @n+1)(n+1) n+1 +

H,. ., —H H,— H

n(n+1) n+ln 1_|_ 2 : 1 _

= n(n+2)aps2— 2n+1)(n+ a1 +n(n+1)a,+a; =
= nn+2)(api2—aq) — (2n+1)(n+1)(apr1 —ar) + n(n+1)(a, —ay).

= n(n+2)

From the above equality and inequality (3), we have that for each k,k > 1, holds the in-
equality

k(k+2)(ak+2—a1)—(2k+ 1)(k+ 1)(ak+1 —a1)+k(k+ 1)(ak—a1) > 0.

By summing this inequality over k we have that

(ngE

(k(k+2)(ars1 —a1) = (2k+ 1) (k+1)(as1 —ar) +k(k+1)(ax —a1)) =

1
n+2)(n(ani2 —ar) = (n+1)(apt1 —ar)) >0,

_

1.e.

api2 —aig ap+1 — Al
>

=b,.
n+1 n "

bn+1 =
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3 Conclusion

We have defined two real sequences (a,) and (b,) based on the harmonic numbers. We
have proved that sequence (ay,) is monotone decreasing, while (b,) is monotone increasing.
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