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Topic Modelling with Morphologically Analyzed Vocabularies

Marcus Spies

Abstract: Probabilistic topic modeling is a text mining technique that allows to extract sets of
term probability distributions which can intuitively be interpreted as latent topics. The extrac-
tion in most techniques uses only document term frequency matrices as input data. Moreover,
topic models estimate posterior document-topic distributions useful for intelligent document
retrieval query processing. This paper discusses two approaches to topic modeling involving
Dirichlet distributions and Dirichlet processes.

However, these and related approaches presume suitable text preprocessing in order to keep
parameter spaces for estimations from training text corpora at manageable sizes. In the present
paper, we discuss the influence of morphological preprocessing of training texts. Morpho-
logical analysis is a computer linguistic discipline that allows to decompose observed terms
into base lemmata. This is effected by a deep analysis of the observed terms as opposed to
straightforward prefix or postfix elimination used in conventional stemming algorithms. Mor-
phological preprocessing is especially effective in inflection rich languages like, e.g. Finnish
or German, and effectively reduces the training vocabulary size. In addition, morphological
preprocessing allows for decomposing compound words.

It is of considerable interest to study the influence of morphological preprocessing on text
mining and statistical topic models. In experiments reported in the application section of this
paper, significant changes of the frequency structure of document term matrices were found.
Interestingly, these changes also led to substantial improvements in model quality indicators of
topic models due to morphological preprocessing.

Steps for further research are suggested in the concluding section.
Keywords: computational morphologies, statistical topic models, latent semantic analysis,
latent Dirichlet allocation, hierarchical Dirichlet processes, natural language processing

1 Probabilistic Topic Modeling

To start, we recall a common assumption underlying many information retrieval and almost
all topic modelling techniques. It is the BOW (bag of words) assumption [19] claiming that

• A corpus is a set of documents.
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• A document is a bag of term occurrences (or tokens, often simply called words).

Corollaries of these claims are that relationships between documents are not relevant to
information retrieval and that word sequences in documents can be adequately summarized
by word counts. Obviously, these corollaries can be grossly inadequate, e.g. in poetic
texts. However, for generic purposes of document characterization like in news services
they suffice in most contexts.

Nex, key generic assumptions of probabilistic topic modelling are as follows –

• A topic is a discrete probability distribution over terms or items of a given vocabulary.
This distribution is usually referred to as topic-term distribution. Topics are assumed
to capture token co-occurrences in documents and form meaningful semantic aggre-
gates of terms.

• A document topic model consists of an assignment of a topic to each term occurrence.
Different occurrences of the same term may refer to different topics, allowing to
capture polysemy of terms. Polysemy could be represented only through similarity
relationships in earlier models based on latent semantic analysis [16].

This approach to topic modelling is attractive to content analytics since it does not pre-
sume apriori category knowledge and proposes to estimate topics by unsupervised learning.
Applications to big data sets in organizational document retrieval are discussed in [25].
More specifically, in the currently most popular probabilistic modelling technique, the la-
tent Dirichlet allocation (LDA, see [3]), the relevant assumptions from the above list are
specialized as follows.

• LDA aims at approximating each document-term distribution by a document specific
mixture distribution of a set k of components referred to as (latent) topics. k is the
assumed number of latent topics and has to be found by experimentation or from prior
knowledge. The document specific topic mixture distribution is commonly referred
to as document-topic distribution.

• Each of the k mixture component distributions is a multinomial topic-term distribu-
tion (defined independently of documents).

• LDA relies on parametric Bayesian inference, generating the document-topic multi-
nomials as posterior from a background prior Dirichlet distribiution. A common
Dirichlet prior may be used for parametric Bayes inference on topic-term distribu-
tions, as well.

• Evaluation of results can be performed using posterior document likelihoods or per-
plexity values.

For an excellent introduction to Dirichlet distributions and their role in Bayesian para-
metric inference, see [9]. For LDA, variational inference [3] and Gibbs sampling [11]
inference procedures have been implemented. LDA as a generative probabilistic approach
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can be conveniently visualized using a combined plate / factor graph / gate model nota-
tion, in line with approaches from [13], [15] and [20], see figure 1(a), which is a slightly
modified citation of a diagram provided by [6]. The interpretation of this graph is that
the only observed variable X is the assignment of a token in 1, ..,nd from document d in
1, ..,D to a topic T in 1, ...,k where the latent random variable T is multinomial and drawn
from a document-topic distribution θ . θ , in turn, is drawn from a corpus wide Dirichlet
distribution parameterized by a scalar αθ , which controls its apriori dispersion. The latent
topic T effectively gates draws from the selected topic-term distribution ϕ ranging over the
vocabulary T and parameterized as multinomial using another Dirichlet prior.

In practice, an LDA solution is computed by combining MCMC techniques for sam-
pling the pseudo-observations X with Bayesian parameter learning. Many libraries im-
plementing LDA are available, some have been packaged in the topicmodels library
for the R statistical programming language [12]. The lda-c package [1] (packaged into
topicmodels for R) is based on the variational inference procedure as detailed in [3].
As example of a Gibbs sampler for LDA, we mention [26]. However, LDA has a number
of properties which often turn into shortcomings in practical applications.

• Topics typically exhibit high commonality as overall frequent terms in a corpus also
appear in many topics with high probabilities.

• Document topic proportions have often approximately singleton support, especially
if documents are short. Multi-topic documents are not reliably analyzed.

• A common feature of all available implementations is that only symmetric Dirichlet
priors, i.e. parameterized by a constant vector, are considered. With an appropriate
choice of a scalar value for populating this vector, nearly arbitrary posterior distribu-
tions can be achieved. However, the limitation to a single posterior value might limit
the scope of parameter inference.

• The choice of an appropriate topic number for a given corpus must be left with do-
main experts, as neither perplexity nor document likelihoods change monotonically
with topic number.

• LDA solutions are highly non-unique. As shown by Vorontsov and Potapenko [29],
LDA effectively computes a solution to a constrained but under-determined NNMF
problem (non-negative matrix factorization). The authors propose an alternative reg-
ularized optimization approach imposing further desirable constraints on the possible
solutions.
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Fig. 1. An LDA factor and gate graph (after [6]), and a corresponding model graph for hierarchical Dirichlet
process models as applied to text corpus analysis. For explanations and further references, see text.
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2 Dirichlet process and Hierarchical Dirichlet process

In order to overcome the need to choose the number of topics in advance, a nonparametric
Bayesian (i.e., parameterized by an unbounded set of parameters whose extent is determined
dynamically) approach has been proposed in [28]. We briefly summarize key elements and
provide a novel plate / gate diagram in fig. 1(b), which will be explained shortly. This
diagram also allows a quick comparison to LDA.

We summarize key properties of a Dirichlet process [8],[24].

• A Dirichlet measure Dα is a random probability measure on a measure space (X ,B),
parameterized by a finite measure α() on (X ,B). α0 = α(X ) is the measure al-
located to the universe X . As will become evident below, the higher α0, the more
dispersed probability measures drawn from Dα will be.

• For every finite partition B1, . . . ,Bk of X , the marginal distribution of Dα is the finite
Dirichlet distribution Dα(B1),...,α(Bk). Dα supports discrete probability measures (pmf)
with probability 1.

• The Bayesian posterior DX
α after observing a sample Xi, i ∈ 1, . . . ,n is Dα +∑

n
i=1 δXi

(similar to a discrete Dirichlet posterior, see [8]).

• Based on the conditional distributions of sequential samples from Dα , sampling from
Dα can be simulated using the Chinese Restaurant process (CRP), see [9],[28, 2].
CRP is a clustering of integers modelled as guests arriving at a restaurant that offers
countably many seats and tables. Seating the i-th guest at a table k is a metaphor for
assigning i to cluster k. Let Ki denote the number of different tables after i−1 guests
have been seated and mk denote the occupancy numbers for those tables. Then, the
assignment rule of CRP is to place arriving guest i at occupied table Xk ∈ X for
k ∈ {1, . . . ,Ki} with probability ∝ ∑

Ki
k=1 mk/(i−1+α0), at a new table else.

The CRP assignment rule shows that higher values of α0 will decrease the probability of
placing new guests at existing tables and thus increase the dispersion of the distribution of
guests in a draw from the Dirichlet process. – Alternatively, based on the Beta-marginal
of a Dirichlet distribution, sampling from Dα can be simulated using a stick-breaking con-
struction as introduced by Sethuraman [24].

Assuming X at least countably infinite, independent samples from a Dirichlet process
share atoms with probability 0. In order to ensure sharing of elements between samples of a
Dirichlet process, an extension to hierarchical Dirichlet processes has been proposed [28].

Basically, a Dirichlet process allows to estimate a Dirichlet mixture distribution model
with a variable (principally unbounded) number of components, while a hierarchical Dirich-
let process can be used to build such a model for grouped variables with shared components.
In the terminology of probabilistic topic modelling, sharing of elements intuitively corre-
sponds to sharing of topics across documents. This view opens the perspective for applying
the approach to statisticall topic modelling with automated estimation of topic numbers.
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The overall statistical model expressed by a hierarchical Dirichlet process as explained is
summarized as a plate / gate diagram in fig. 1(b). Modelling conventions used in this
diagram are the same as for fig. 1(a), and symbols are aligned with LDA nomenclature as
far as reasonable. The explanation of the HDP model is summarized in the following items.
We use double subscripts to make reading easier, while the diagram in fig. 1(b) uses single
subscripts if the scope of the index is clear from the enclosing plate.

• HDP [28] aims at describing document term distributions by a mixture of an adap-
tively estimated number of component topic-term distributions indexed θk for a finite,
however not apriori fixed or bounded integer k.

• A common corpus component or topic prior distribution is constructed from a base
Dirichlet process Dγ . Drawing from Dγ yields a sequence of proportions βk mod-
elling corpus wide topic probabilities.

• Document d topic proportions are derived from a secondary Dirichlet process Dα0

instantiated for each d in 1, ..,D . These secondary processes operate by random
probability variations and component selections on Dγ yielding per document random
measures πd . For the derivation of the resulting distribution, see[28], p. 12 (eqs. 22-
24).

• Tokens i within document d are clustered using the per document random measure
πd for drawing token-level random variables φi,d . This is done for all nd tokens in
each document.

• It is helpful at this point to think of the φi,d as arranging tokens per document into
virtual local topics corresponding to components drawn from the document Dirichlet
process Dα0 . These virtual topics have been described in [28] and related publica-
tions as tables of a Chinese restaurant franchise combining a local Chinese restaurant
process per document with a franchise provided selection of dishes. In the Chinese
restaurant franchise metaphor, these virtual topics are referred to as tables in the local
restaurant (document in our context) to which guests are assigned. The virtual topic
or table to which a token is assigned is t.

• The corpus topic proportions β are used in a next step for drawing the topic selection
for each virtual topic (or table) of tokens (guests) per document. This per-document
per local cluster topic assignment is the value of the Dγ −β -distributed random vari-
ables Ψt . In the Chinese restaurant franchise metaphor, this corresponds to the assign-
ment of a global topic (franchise wide available dish) to a local or within-restaurant
grouping of guests. By this assignment, the common components as pre-selected by
the corpus wide Dirichlet process Dγ are now chosen as values of the local document
components. The assignment as described is carried our for all local groups or tables
of which we have |t| in a given document.
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• Note that β as drawn from the corpus wide Dγ process is a random probability mea-
sure. This is used as distribution of a factor generating the per-table topic selections
Ψt . In the diagram in fig. 1(b), we use again the convention proposed by Laura
Dietz [6] which allows a gate symbol with an iteration scope provided by the gating
variable (in our case, t).

• Topic term distributions are constructed from a prior distribution parameterized η for
each k ∈ {n|Dγ(n)> 0}, i.e. for each k such that the corresponding numbered global
component has non-zero probability The generation procedure for a given vocabulary
of final and fixed size |V | is usually a draw from a multinomial distribution for a
sample size |V | parameterized with a Dirichlet prior. As the number of terms is known
and fixed for a text corpus analysis, no additional stochastic process is involved here.

• Gated by the topic drawn from Ψt , a draw from the corresponding topic-term distri-
bution θk yields a term explaining the current observed token xik. This happens for
all nt tokens in the scope of a topic-to-table assignment ti.

Regarding implementation, a Gibbs sampler based solution for HDP inference on a
corpus of documents in the C++ language is available from [4], see [30] for the algorithmic
foundations, which we do not dwell upon in this paper.

We now turn to applying hierarchical Dirichlet processes in topic modelling for natural
language text corpora.

3 Morphological Analysis

Morphological analysis is a computer linguistic technique for decomposing words of a
given natural language into basic components representing the word stem (or lemma) and
any prefixes or suffixes. Morphological analysis also comprises segmentation of compound
words and recursive (morphological) analysis of the composing words. Practical applica-
tions of morphologies in computer based text analysis usually also comprise part-of-speech
(POS) annotation of the words appearing in a given text. Usually, especially in inflection
rich languages like German, morphological analysis of a given word in context yields multi-
ple results, including also multiple candidate POS tags. If an application requires choosing
a single result, this will be typically computed using a sequential stochastic model like Hid-
den Markov (HMM) or Conditional Random fields (CRF), see [27]. In order to build a
morphology of a given language, human effort by trained linguistic experts is needed, and
additional statistical analyses of training data for estimating HMM or CRF parameters and
optimizing the morphology are required.

Technically, most computer linguistic morphologies in use have been constructed using
the formalism of finite state transducers (FST, see, e.g.,[5]), which we summarize briefly.
A finite state transducer in a morphology processing application comprises

• an input alphabet Σ, usually letters or phones of the language of the morphology,
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• an output alphabet ∆, usually composed of the input alphabet augmented by analysis
tokens for the morphological description (like prefixes etc) and tokens for part-of-
speech tags

• a finite set of states Q,

• a set of initial states I ⊂ Q,

• a set of final states F ⊂ Q,

• a finite set of transitions E ⊆ Q×Σ×Q×∆.

An FST works by accepting input strings from Σ∗ starting from an initial state through a
path of transitions in E accepting one token from the input until reaching a final state in
F – very much like a deterministic finite state automaton (DFA), however, each transition
maps the input token consumed to a (possibly empty) output token in ∆∗. Using loose
terminology, an FST can be said to translate a string from the upper language in Σ∗ to the
lower language in ∆∗. In effect, an accepted input string representing a natural language
word is thus translated into an analysis string that usually contains segmented portions of
the input word with additional analysis tokens.

A weighted FST has transition rules augmented by non-negative real valued weights

E ⊆ Q×Σ× (R+∪0)×Q×∆

Weights on FST transitions are accumulated along paths using a tropical algebra, see [17].
Here is an (abridged) example of an output of the interactive morphology processor

hfst-lookup (see [18]). This output was produed using a morphology for the German
language (SMOR, see [23, 22]) rebuilt by the author for the HFST system [18]. For back-
ground on HFST-based morphology construction, including definition and construction of
weighted morphologies, see [17]. Here is the (unweighted) output of the morphology pro-
cessor given the input word vorzeitig.
v o r z e i t i g V o r z e i t <NN> ig <SUFF><+ADJ><Pos ><Adv>
v o r z e i t i g V o r z e i t <NN> ig <SUFF><+ADJ><Pos ><Pred >
v o r z e i t i g vor <PREF> Z e i t <NN> ig <SUFF><+ADJ><Pos ><Adv>
v o r z e i t i g vor <PREF> Z e i t <NN> ig <SUFF><+ADJ><Pos ><Pred >
v o r z e i t i g vor <PREF> z e i t i g <+ADJ><Pos ><Adv>
v o r z e i t i g vor <PREF> z e i t i g <+ADJ><Pos ><Pred >

It can be seen that ambiguities occur for the morphological as well as syntactical com-
ponents of the analysis. In the analysis of running text (e.g., using hfst-proc, a tool
provided by [18]), these ambiguities are resolved either using constraint propagation or
Viterbi alignment on the weighted morphological analyses is involved. In the latter case,
training of the analyzer on a large natural language corpus is needed such as to train not
only local analysis probabilities but also part-of-speech tag transitions in word sequences.

Technically, a large morphology is constructed from the analyses provided by experts
and / or by statistical analysis using the FST union and composition operations to give one
single FST optimized for lookup performance, see [18].
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The following examples demonstrate the capability of morphology processing in rela-
tion to compound word segmentation, here we omit the POS tags and weights for brevity.
S c h u l d n e r g r u p p e n z u o r d n u n g e n Schu ldner <NN>Gruppe <NN>zu <VPART>ordnen <V>ung <SUFF>
A l l g e m e i n v e r b i n d l i c h k e i t s e r m a h n u n g e n A l l <NN>gemein <ADJ> v e r b i n d l i c h <ADJ> k e i t <NN>

<SUFF>er <VPREF>mahnen <V>ung <SUFF>

The principal benefits of applying morphological analysis to text corpora in preparation
of computing a topic model are as follows–

1. the lemmatization (reduction to base morphems) leads to effectively lower vocabulary
(or term set) size as it maps multiple inflected forms to a single base morphem,

2. the decomposition of compound words leads to effectively larger term counts as they
accumulate for one token from several compounds (this effect cannot be produced by
stemming).

The following section will present evaluations of those benefits for a real text corpus exam-
ple.

Extensions to FST have been studied, in particular pushdown transducers that allow to
process stack variables like a conventional pushdown automaton, however augmenting its
functionality by a translation capability, see [5].

4 Using Morphologies for Document Preprocessing

In text mining based to the bag-of-words (BOW) approach, documents are usually prepro-
cessed in several steps before specific text mining algorithms are applied. Typical steps
include transformations to lower case, dropping punctuation and space or tab characters. A
first non-trivial transformation is tokenization which in the simplest case establishes word
boundaries, and in more complex cases, is used to identify multiword entities like person
names, measure units (with preceding or following numerical values). Complex tokeniza-
tions have been one major contribution of research in named entity recognition (NER).

A second common and non-trivial transformation is stemming. Stemming results in
token truncation in order to eliminate grammatical variations like case specific endings
etc. Available open libraries like R text mining (tm, see [7]) include typically rule-based
stemming packages like Porter stemming.

A serious limitation of stemming is the lack of deep linguistic processing which comes
to bear especially upon processing inflection rich languages. In these, stemming will only
recognize a very small fraction of forms of irregular verbs or irregular nouns. If the language
of a corpus, in addition, makes rich use of compound words (as, e.g., in German corpora),
stemming will also fail to decompose them and identify useful word components for the
vocabulary. These capabilities are contributed to document preprocessing by morphological
analysis.
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4.1 Procedure for Morphological Processing of Text Corpora

The following pseudocode summarizes the procedure for morphological corpus analysis in
a suitable way for enabling analytics related vocabulary sizes and coverage of document
tokens by morphological lemmata.

For this purpose, first, all documents and their tokens are processed sequentially by a
program combining tokenization with morphological analysis (in the case of the present
research, hfst-proc [18] is used for the morphology in [23, 22]). The output of morpho-
logical analysis is a string for each token composed of a sequence of base lemmata together
with their grammatical analysis and POS tags. As tokens usually are ambiguous permitting
several analyses, the most probable such analysis is selected for further processing. Techni-
cally, the most probable morphological analysis can be computed from grammar and POS
tags aligning a hidden Markov model as described earlier.

Second, the analysis string is stripped of grammatical and POS information to yield a
single base lemma, or, in case of a compound word in the observed token, a sequence of
pure base lemmata.

Third, this sequence (of length one in case of a non-compound word) is used to update
a vocabulary list of lemmata together with their observed frequencies (created by document
and integrated over documents in a final summary step).

Fourth, the vocabulary list is used to build an inverted index of observed tokens ex-
plained by a base lemma. For each lemma in the vocabulary, a list with tokens containing
this lemma is maintained together with appropriate frequency counts. Note this list is for-
mally a bag, as repetitions of tokens explained by a given lemma may occur. As in the
preceding step, the inverted index is created for each document and a roll-up over docu-
ments is performed in a final summary module.

Finally, integration of the vocabularies, inverted indexes and frequencies is performed
for all documents using a module containing usual aggregation operations (not detailed in
the pseudocode). This aggregation step is currently implemented as a gawk1 batch script
operating on a collection of document vocabulary and index files.

The current implementation also does not compute a document-term frequency matrix
as this is a standard function available from the R tm (text mining) package [7].

The implementation of these procedures is currently realized by a combination of GNU
gawk scripts and UNIX shell scripts. gawk has built-in UTF-8 support and therefore does
not require maintaining locale settings as would be needed, e.g., in C++. In addition, gawk
has convenient pattern-based string splitting built-in functions and can readily be used for
ragged arrays. These features make it a good choice for processing at least small up to
medium sized text corpora.

1https://www.gnu.org/software/gawk/
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input : A corpus of text documents
output: A corpus of lemmatized documents, a lemma vocabulary and an inverted

token index
foreach document i do

foreach token j in i do
get s:= morphologicalAnalysisString ( j ) ;
lemmaList:= decompose(s, POStags) ;
foreach lemma in lemmaList do

if ! lemma in vocabularyList then
appendTo (vocabularyList, entry(lemma, 1)) ;
appendTo (inverseIndex, entry(lemma, token)) ;

end
else

e=lookUp (vocabularyList, entry(lemma)) ;
e.frequency++ ;
if (inv=lookUp (inverseIndex,entry(lemma)) !=0 then

appendTo (inv.tokenlist, token) ;
end

end
end
appendTo (lemmatizedDoc, lemmaList) ;

end
update(globalVocab, vocabularyList) ;
update(globalInvertedIndex, inverseIndex) ;

end

4.2 Effects of Morphological Processing on Vocabularies and Document Term Fre-
quency Distributions

To investigate effects of morphological processing, several corpora are being examined at
the LMU knowledge management research group. In this paper, results for a small corpus
are presented. The corpus has been built from election program documents of four major
democratic German parties published in the campaign for the general elections in Germany
in 2013. The documents were segmented manually by chapters yielding an overall corpus
size of 38 documents with overall around 200 000 tokens.

After applying stop word elimination the corpus was either stemmed or morphologically
preprocessed. For stemming, the standard procedure available in R text mining package
tm was used, [7]. For morphological analysis the tools and procedures described in the
preceding section were used.

Morphological preprocessing reduces the size of the corpus vocabulary by aggregating
tokens with common base lemmata into one observed term. For our test corpus, this effect
is considerable, leading to a reduction in vocabulary size from 18372 to 5296. Additionally,
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due to the decomposition of compound words, morphological preprocessing increases the
number of the observed tokens, and, consequently, many term frequencies. Overall, the
stemmed corpus has 83 180 tokens, while the morphologically preprocessed corpus has
100 771.

So, on the descriptive level of analysis, morphological processing leads to shift in term
frequencies away from lower frequencies towards higher frequencies. This can be readily
verified from the log-log plot of the corpus frequency table (plotting observed frequencies
against frequencies of these frequencies), see fig. 2. E.g., for term frequency one indicating
a term observed once in the entire corpus the stemmed data has 10 245 such terms, while
the morphologically processed data has 1642 (not correcting for vocabulary size to keep the
argument simple). On the other hand, the maximum observed frequency of a term in the
stemmed data is 150 while it is 240 in the morphologically processed data.
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Fig. 2. Log-log plots of term frequency data from stemmed (marked o) vs. morphologically preprocessed
(marked m) corpus. For details and explanation, see text.

Experiments with other corpora performed in our lab indicate similar effects. In or-
der to grasp these effects in a statistically meaningful way, a Zipf distribution was fitted to
stemmed vs morphologically preprocessed data. The Zipf distribution is a theoretical distri-
bution of second order frequencies (or frequencies of term frequencies) in large text corpora
that has been shown to fit natural language as well as similar data from other domains (see,
e.g. [19]). A Zipf distribution would predict a straight line relating the log of first order
frequencies to the log of second order frequencies.

In the case of the present corpus, first, the fit of an estimated Zipf distribution is very
good for both data sets, as would be expected from the almost linear decreases in the plot
in Fig. 2. It fact, the Pearson-Chi-Square fit test yielded .98 vs. .48 for the two data
sets. The goodness of these fits can also be verified from the probability plots for the two
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preprocessing procedures in Fig. 3.
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Fig. 3. Probability plots of term frequency data from stemmed 3(a) vs. morphologically preprocessed 3(b)
corpus fitted to Zipf distributions. For detailed explanation, see text.

Second, it is interesting to see whether the distributions under both preprocessing pro-
cedures are different. This is the case with a p-value of 0.16 for the probability of the
morphologically preprocessed data under the hypothesis of the stemmed data Zipf distri-
bution parameter. On the other hand, a convincingly significant p-value of 0.04 is found
for the probability of the stemmed preprocessed data under the hypothesis of the morpho-
logically processed data Zipf distribution parameter. The difference in the p-values from
either perspective can be attributed to the fact that the fitted parameter is higher for the mor-
phologically processed data (.58) than for the other data set (.47), which leads to a wider
spread distribution. We note that the Zipf distribution is a special case of the Riemann Zeta-
distribution, and, as such, belongs to the long tail distributions. Specifically, in the case of
the presently fitted parameters, both means and variances are infinite.

An additional instructive descriptive analysis can be performed based on the document
term matrices (DTM). In information retrieval applications (see [19]), these matrices are
usually analysed with singular-value decomposition (SVD) to capture latent semantic in-
formation (latent semantic analysis in the sense of [16]) hidden in term co-occurrences in
documents.

As in LDA, SVD also leaves the analyst with the task to choose an appropriate reduced
posterior dimensionality of the SVD-space. A useful interprestation of SVD in case of
document term matrix inputs is that of a best rank n approximation B of a matrix A that
minimizes the Frobenius norm of ||B−A|| where B is taken to be the SVD of A. As shown
in [14], the remaining part of ||B−A|| after taking into account k singular values Ek is.

Ek =

√
∑

l
i=k σ2

i

∑
l
i=1 σ2

i

Fig. 4 shows the sequences of residual errors in the sense just defined for the SVD de-
compositions of document term matrices from our election campaign corpus with stemming
vs morphological processing. It is readily verified that morphological processing allows to
capture the overall data variability with a considerably lower number of dimensions for
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any given error level. E.g., to capture ca. 80% of the variability, a 20-dimensional space
would suffice for morphological processed data while 25 dimensions would be needed for
stemmed data.
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Fig. 4. Sequences of residual errors for SVD decompositions of document term matrices from the election cam-
paign corpus with stemming (marked o) vs morphological processing (marked m) For details and explanation,
see text.

Finally, the impact of morphological preprocessing on topic model inference can be
assessed. Here is a summary of initial findings for the election program corpus described
above.

In some experiments with HDP (using the recent implementation [4] with a few minor
amendments), the advantages of the analyses by LDA with morphological preprocessed
corpora could be confirmed.

In addition, HDP with morphological preprocessed corpora leads to substantially lower
estimates of topic numbers. For our example, the election campaign corpus, running HDP
with default parameter settings for 1000 iterations for the morphologically preprocessed
corpus leads to an estimation of 67 topics with an overall estimated log-likelihood of -
772600.402 and an average document log-likelihood of -7.66689. Under the same condi-
tions, the stemmed original corpus leads to a model with 80 topics and an overall estimated
log-likelihood of -794623.148 with a per document average log-likelihood of -9.55306.
Thus, morphological preprocessing allowed a decrease in the number of estimated topics
by ca. 16%, and a considerable improvement in posterior document log-likelihood of about
20%.

As for Latent Dirichlet Allocation (LDA), the topic numbers found by HDP (67 vs.
80) were used to compute LDA models for the corpus in stemmed vs morphologically
preprocessed versions. For the exploratory purpose of the present paper, LDA was run
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from R topicmodels [12] using the variational inference algorithm as detailed in [3] with
the default settings (start value of the prior document-topic Dirichlet dispersion parameter
of .625, tolerance 10−6 and 1000 iterations for variaional inference, tolerance 10−4 and 500
iterations for the document expectation step of the EM part of the variational algorithm). In
order to see potential benefits of other fixed LDA topic numbers, additional analyses were
run for topic numbers 19, 38 (half and full corpus size). As can be verified from Fig. 5,
for all choices of topic numbers, the posterior perplexity value of the models based on the
morphologically preprocessed corpus outperform those for the stemmed corpus (perplexity,
here, is derived from posterior document likelihoods normalized by the number of tokens
per document, see section 7.1 in [3]).
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Fig. 5. Perplexities of LDA models estimated for various topic numbers comparing morphologically prepro-
cessed (legended smorph) to stemmed versions of the election campaign text corpus (legended orig). (Lower
values indicate better model fit.) For details and explanation, see text.

To sum up, initial simulations of topic models built on morphologically preprocessed
corpora show substantially improved model fits compared to simple preprocessing by stem-
ming or related procedures.

5 Conclusion

In the present paper, we reviewed some essential features of the Hierarchical Dirichlet Pro-
cess (HDP), a non-parametric topic modelling approach that extends Latent Dirichlet al-
location (LDA) to allow for a dynamically assigned number of topics during the model
estimation phase for a given corpus. (Recall that non-parametric here only means that the
number of model parameters is estimation dependent.)

From a pragmatic point of view, HDP alleviates the burden of topic number testing from
content analysts applying topic modelling. A significant problem involved with this testing
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is that computations of LDA models for different topic numbers are independent in the sense
that there is no topic identity or modification across different runs of an LDA estimator.
Together with the proven non-uniqueness of LDA solutions this means that in principle
a sample of models for each topic number would need to be computed and assessed in
order to yield a reasonable guideline for choosing an appropriate topic number. HDP does
compute a sequence of partial topic models such that increases or decreases in the number of
estimated topics vary on a common base model. Even if an appropriate use of this technique
also requires several simulation runs and parameter adjustments the resulting topic number
proposals are in general similar and can readily be used by content analysts. This has been
found already in a thesis from our work group at LMU Munich for a large document corpus
of an education institution [21]. The findings for the election campaign corpus confirm
these results, moreover, they highlight the importance of morphological preprocessing for
ensuring high model quality.

Related to future work, the simulations performed are planned to be extended by some
fine tuning of the estimation procedures for both LDA and HDP. Initial results show that
fine tuning parameters and simulation procedures can improve topic model quality substan-
tially. It is also planned to further investigate morphological processing in combination with
extended linguistic features in its effects on corpus descriptors like term frequencies.
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