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Finite Fourier Decomposition of Signals Using Generalized
Difference Operator
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Abstract: In this paper, we introduce discrete inner product of two functions, discrete orthogo-
nal and orthonormal system of functions and develop finite Fourier series for polynomial facto-
rial, polynomial, exponential, rational and logarithm functions using the inverse of generalized
difference operator

Keywords: Discrete inner product, Discrete orthonormal system, Finite Fourier series and
Generalized difference operator.

1 Introduction

In Fourier analysis, a signal is decomposed into its constituent sinusoids. In the reverse
by operating the inverse Fourier transform, the signal can be synthesized by adding up its
constituent frequencies. Many signals that we encounter in daily life such as speech, auto-
mobile noise, chirps of birds, music etc. have a periodic or quasi-periodic structure, and that
the cochlea in the human hearing system performs a kind of harmonic analysis of the input
audio signals in biological and physical systems [11]. The Fourier series decomposes the
given input signals into a sum of sinusoids. By removing the high frequency terms(noise)
of Fourier series and then adding the remaining terms can yield better signals [4].

Finite Fourier series is a powerful tool for attacking many problems in the theory
of numbers. It is related to certain types of exponential and trigonometric sums. It may
therefore be expanded into a finite Fourier series of the form

flak) = Eog(j)a“j(/,t =0,1,---,m—1). The orthogonality relation
J:
mil wgti— 4™ (a = b(mod m)),

enables us to determine the finite Fourier coef-
j=0 0 (a# b(mod m)),
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ficients g(k) explicitly by means of the formula g(k) = — Z fla®)Ya™ [2]. If we are

given k distinct complex numbers 79,21, -+ ,2x—1, then there 1s one and only one polynomial
P(x) = §o+ Cix+-- -+ §_1x*! satisfying the equations P(wy) = zy(v =0,1,--- ,k—1)

[10].
N/2 N/2-1
A finite Fourier series: 1n(f) = Ao+ Y. Ajcos(qoit)+ Y Bysin(qoit), where
q=1 q=1

1 = sea surface elevation (m), t = time (s), A9 = recond mean (m), N = total number of
sampling points, A, and B, = Fourier coefficients (), ¢ = harmonic component index (in
the frequency domain) and 07 = fundamental radian frequency, is used in [6]. The sum of

N sine waves defined over the time interval, 0 <t < T :y= Z aycos(wpt+¢,),0<t, <T,

a, > 0,0 < ¢, <2x, where a, is amplitude and ¢ is time, 1s also a finite Fourier series[3].
In [7], the authors describe an efficient formulation, based on a discrete Fourier series ex-
pansion, of the analysis of axi-symmetric solids subjected to non-symmetric loading. They
have discussed the Fourier series approach, the discrete Fourier series representation prob-
lems such as the presence of Gibb’s phenomenon and the lack of conformity of elements.
Here we arrive a new type of finite Fourier series for functions (signals) by defining discrete
orthonormal family of functions using inverse generalized difference operator AZI . This fi-
nite Fourier series becomes Fourier series as ¢ tends to zero. Suitable examples verified by
MATLAB are inserted to illustrate the findings.

2 Preliminaries
The primitive N roots of unity (2N =1 but 7" # 1;0 < r < N)
Zp =N =123, N—1, (1)

where n and N are co-prime, satisfies the geometric series expressed as

NV A -1 1 if N=1
Y o=alg ="—= ' (2)
k=0 k=0 z,—1 0 if N>1.
From (1) and (2), the complex discrete-time sequence e, (k) is defined as
en(k) = (z)f = PNy k=0,1,2,...,N—1. (3)

For the positive integers n, r and N, the e,(k) defined in (3) satisfies the identity

N—1 N | N . )
Z en(k) = A*Ien(k) — A*lel(2ﬂ:n/N)k‘ _ N lf n=rN "
— k=0 k=0 O lf n # ]"N‘
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This mathematical property is utilized with the factorization into two orthogonal exponen-
tial functions, {e,(k)} satisfying

A e, (k)et (k) o A le

N :{N if n—m=rN 5)

0 if n—m#rN,

where m,n and r are integers, and the notation (x) represents the complex conjugate. The
equation (5) induces us to define a generalized discrete orthonormal system and a finite
Fourier series by replacing A by Ay and e, (k) by u, (k). Nonexistence of solutions of certain
type of second order generalized ot-difference equation with the operator Ay () has been dis-
cussed in [9]. When o = 1 the operator Ay (y) becomes the generalized difference operator
Ay.

Definition 1 /8] Let u(k), k € [0,00), be a real or complex valued function and { > 0 be
fixed. Then, the generalized difference operator Ay on u(k) is defined as

Apu(k) =u(k+0) —u(k), (6)

and its inverse is defined as if there is a function v(k) such that

Av(k) = u(k), then v(k) = A u(k)+c;, fork € {j+re}°° , )

r=0

where c; is constant, j =k — [k/{]¢ and [k/{] is the integer part of k/L.

Lemma 1 [8] Let s and S are the Stirling numbers of first and second kinds, kéo) =1,
KD =k and kK™ = k(k — 0) (k—2¢) - - (k— (m — 1)£). Then we have

K=Y ek =Y sk Ak = (meyim Y ®)
r=1 r=1
and (mt1) ")
K m - gmpm—r(r
Aflk(m) — l Aflkm: r 4 ) 9
T T i m 1) Y r; (r+1)¢ ©)

Lemma 2 [5] Let p be real, { > 0, k € (¢, o) and pl # m27x. Then, we have

sinp(k — ¢) — sin pk

A, sin pk = ;
¢ Sp 2(1 —cos pf) i

(10)

cos p(k — ) — cos pk
2(1 —cosp¥)

A, ' cos pk = +c; (11)

and
A N u(k)w(k)) = v(k)A, 'wk) — AN (A w(k+ 0 Agu(k)). (12)
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Remark 1 From (10) and (11), we have

1. 2 1 2
A7 'sinpk| " =0=47"cos pk| . (13)

bh—
Lemma 3 /8] If u(k) is a bounded function on [a,b] and { = Ta’ then we have

b M M—-1
A u(k)| = Z ulb—rt) = Z u(a+rl). (14)
a r=1 r=0

In general, when k € ({,0), we express

v L] [£]-1
Aub)| = Youlk—rt) = ¥ u(jtr0). j=k—[k/0L. (15)
r=1 r=0

3 Discrete Orthogonal System and Finite Fourier Series

Since a finite Fourier series is described by a family of discrete orthonormal functions,
we introduce a orthogonal and further a orthonormal system of functions by defining the
discrete inner product.

Definition 2 Ler u(k) and v(k) be bounded functions defined on [a,b] and
bh—
= Va. The discrete inner product of u and v with respect to £ is defined as

b M—1
=0Y u(a+rl)v(a+re) (16)

a r=0

(u,v)e = LA, "u(k)v* (k)

and the discrete {—norm of u, denoted by ||ul|(, is defined as

1/2
B by1/2 M1
lully = (0 = {ea7 )|} ={£Z|u<a+rf>|2} .an
a r=0

b—a

Definition 3 Let I =[a, b), { = and Sy ={¢o, 01,92, ...0n } be a collection of bounded

complex valued functions defined on L. If (@, ®n) ¢ = O whenever m # n, the collection Sy is
said to be a discrete orthogonal system, if in addition ||¢,||, = 1 for each n, then S is said
to be discrete orthonormal.
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b

Definition 4 Let Sy = {¢o, 91,92, ...0m } be an orthonormal on I = [a,b], { = A_la’ u(k) is

a bounded function on I and ¢, = (u, ¢, )¢, (say finite Fourier coefficients). Then the finite
Fourier series of u(k) related to Sy is defined as

k y k), k AN 18
k) = Y (k). ke {atrt}” . (18)
Example 1 Let [ = [a,a+ 27, { = % (here M = 2N) and

1 sinnk cosnk

¢0(k) = Ev ¢2n—1(k) - ﬁv ¢2n(k) - 77 n= 1727"' ’ N. (19)

0) at2r 21
‘ = —, we find that Sy = {¢o, 91, 92, ...9n } is a system of discrete

By (13) and A, 'k ;

orthonormal functiozgs onl.
From (18), the finite Fourier series related to (19) is given by

ao N-1 an 2N—-1
u(k) = > + Z (ancosnk + b, sinnk) + TCOSNk’ ke {a+r€} 0 (20)
n=1 =

a+2rw Y/

| a+2
, by = EAZ u(k) sinnk

¥
are got by (14).

1
where a, = ;AZI (u(k) cosnk)

a a

M M-1
Theorem 3.1 Let u(k) = Y. c,¢n(k), k € {a+ rﬂ} . be the finite Fourier series of u(k)
n=0

r=
relative to a discrete orthonormal set Sy. Then we have

M
) lcal? = H”H%z) (Discrete Parseval's Formula) (1)
n=0

Proof Since Sy is orthonormal and Azl is linear, (21) follows from (16), (17), (18) and the
Definition 3.

([l
Theorem 3.2 Let k € (—oo,00) and ¢ > 0. If nl # 2mm, then we have
m m 141 1 (f)gtk(m*t) k—/f YA
A;lkg ) cosnk = Y Y (H_ ) (m)y Ck,"_cosn( —:: ) (22)
i=0r=0 \ T (—=1)~1(2(cosnl — 1))
and () o ()
USRS D0k sinn(k— 0+ re
Ailkém) sinnk =YY (H' ) (m); L'k, sinn( Tfl ) (23)
l i=or=0 \ T (=1)=1(2(cosnl — 1))
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Proof Taking u(k) = k'), w(k) = cosnk in (12) and using (9) and (11), we get

(1) _,(y(cosn(k—¥¢)—cosnk\  _;cosnk—cosn(k+Y{)
A (ké cosnk>_k ( 2(1—cosnt) ) ”( 2(1—cosnt) E)'

Since AZI is linear, applying (11) for both cosnk and cosn(k+¢), we get

1/, (1) _(1y[cosn(k— L) —cosnk
A (kﬂ cosnk)-ké ( 2(1 —cosnl) )

f(cosn(k —0)— 2cosnk—|—cosn(k—|—€)>
a (2(1 —cosnt))?

(24)

Taking u(k) = k>, w(k) = cosnk in (12), and using (9), (11) and (24), we get

(2)
—-1(,(2 _ k;(cosn(k—£) — cosnk)
A, (kg COSnk) = 71 —cosnd)
ZKkS) (cosn(k— () — ZCosnk+cosn(k+£))

(2(1 —cosnt))?

(10)(2¢0) (cosn(k — ) —3cosnk+3cosn(k+{) —cosn(k+ 26))
(2(1 —cosnt))3

N (25)

which can be expressed as

2 141 )0k cosn(k — £+ rt
Azlkgz) cosnk=Y Y (t+r1) (2); 0k, cosn( ‘;: )
1=0r=0 (=1)~1(2(cosnt — 1))
Continuing the above process, we get the relation (22).
Now, (23) follows by replacing cosnk by sinnk in (22).

O

T 2N—1
Corollary 1 WhenI =0, 2n], { = N ke {rﬁ}o , the finite Fourier coefficients a, and

(m)

by for the polynomial factorial k; are given by

*A lk(m) _ \="e 2
o am+l)’ (26)
an:ngllé Z“f <t+1> (m)\er(2) " cosn(r—1)¢ o
T =0 r=0 N(—1)1(2 (cosnﬁ—l))t+1
and
14

2 ”i"f(t—l—l) (m)er27)" ) sinn(r—1)¢ 08)
O o=\ T" /N

by = —A7 K sinnk| = .
ot (=) 1 (2(cosnt — 1))
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Proof The proof follows by applying the limit O to 27 in (22) and (23), and then multiplying
by /.

O

Example 2 From (20), and using (26), (27) and (28) for ay, a, and b,, respectively, we get
the finite Fourier series for the polynomial factorial kém) as

N—1 2N—-1
kém) = % + ngl(an cosnk + b, sinnk) + aTNcost, ke {rﬁ}rzo . (29)

T
In particular, when N = 20, £ = 20 and m = 15, (29) becomes,

(27m)1550 19 >
013 = T77r'5/+nz (ancosnk+by smnk)—i—700520k ke {20}r:o‘

Theorem 3.3 Let k € (—o0,00), £ > 0 and nl # m2w, then we have

p m t+1 1 551 (’)k(m—’) k—/f Y4
lk”cosnk— Z Z Z (t—l— > (m)y 'k, cosn( —I—rti1 30)
m=11=0r—0 (=1)r=1em=t=r(2(cosnl — 1))
and (t) 1 (m—1)
m 141 1\ Shm) k" sinn(k— €+ rt
1k"smnk— Z Z Z <t+ ) (m)y"ky”sinn( +rt2rl. 31
m=11=07—0 (=1)r=1em=t=r(2(cosnl — 1))
Proof The proof follows by second term of (8) and applying (22).
O

T
Corollary 2 When I = [0, 2x], ¢ = N the finite Fourier coefficients a, and b, for n =
0,1,2,--- N for polynomial k? are given by

o p—1 m t+1 1 S& (1) 2 (m—t) — 1)

ap = éAzlk”cosnk Z Z Z < + ) (m), (27),"_"cosnir >t+1 (32)
m=1t=0r=0 r=INgm=t=p(2(cosnf — 1
T 1) 1 pm—t ( ( Y] ))
and

2 p—1 m t+1 SP (1) 2 (m—t) . — 1)
by= a7 WP sinnk| = Y (’“) mlm) 7 @), _sinn(r=DE g

® 0 wT1i=0r=0 \ "/ (=1)INem=t=p(2(cosnl — 1))

Proof The proof follows by applying the limits O to 27 in (30) and (31), and then multiply-
ingby {/m.



54 G. B. A. Xavier, B. Govindan, S.J. Borg, M. Meganathan

O

Corollary 3 From (20), and using (32) and (33) for a,, and b, respectively, we get the finite
Fourier series for the polynomial k¥ as

kP 2 0 Z (an cOS 1k + by sinnk) + 7cost ke {ré}r:O . (34)
2N—1
Corollary 4 Let I = [0,2n], { = N and ¢ > 0 be a constant. Then, for k € {rf} 0 the
r=
finite Fourier series of the geometric function c* is given by
0 P —1\  UN1 [2z/0)
k= 7 (7& 1 ) + p ’El (cosnk El c2m=rl) cosnrd
27/ / [2m/0)
—sinnk Z =) sinnr@) + %cost Z P70 cos Nre. (35)

r=1 r=1

Proof The proof follows by taking u(k) = c¥ in (20), and then applying (15).

The following example is a verification of Corollary 4

Example 3 Taking c =8, N =100 and { = % in (35), we have

827 _ 1 1 99 ,200 (27 nri
r(7/100))
200(3%/100 1) 100 nZI ( L 05300 100 <O

_ 8 (2n—r(7/100))
El sin ‘o5 100

gk =

1 200 T Y 199
smnk) —i—mrxl cosrmcos 100k, k € { 100}

T
Theorem 3.4 Let [ = 21, 47|, m € (—oo,00), { = N Then the finite Fourier series of

1
rational function o is given by

1 ¢ mjl) 1 ¢ N-1 <[2”/(] cosnrf

- -~ e _cosnrl )
ko 2x El (47— ro)m + T ngl L Gr—ro)m cosn.

[2z/¢] ¢ RO cosNre

s1nnr£ 2N-1
_ Z 4TE nnk) 27[f ';1 mCOSNk, kE {27[+r€}r:0 . (36)

1
Proof Taking a =2m, u(k) = o in (20) and applying (15), we get (36).
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The following example is a verification of the Corollary 3.4.

Example 4 Tuking m—5, N — 24, { — % in (36), then we have

1 1 48 1 N 1 223 ( 48 cosnr(m/24) L
S — cosn
K 48,5 (4n—r(xw/24)) 24,2 \,5 (4n—r(m/24))>

48 sinnr(m/24) . 1 48 COSFTT
X Gt 2t ™) 8 L G e 2

47
24k, k {2 }
CcoS S T+ — o

T
Theorem 3.5 Let [ = [n/8,171/8], { = N Then, the finite Fourier series of the logarith-

mic function logk is given by
¢ bzl 17 et R 17 17
logk—ﬁ ): log(=5* — )+ Z ( Z log(=g* — r€)cosn(=g" —rf) cosnk
=1 r=1
[MM 17 17 .
+ Z log(~5* — Z)smn(T”—ré)smnk)

+— Z log (ﬂ — rﬁ) <:0sN(17—717 — rﬁ) cosNk, k € {

2N—1
A S
or & 87 8 ) G7

8

Proof The proof follows by taking a = g, u(k) = logk in (20) and applying (15).

The following example is a verification of the Corollary 3.5

15
Examples TaklngN 8 f— ll’l,(37) forke{ﬂerrﬂ?} O wehavelogk—l— Z log(l77t rﬂ?)+
r=
16

17
= Z ( Y log(HZ-n ’”)cosn(””s L) cosnk
n 1 =1

1
+ Z log(ME=Z) sinn (122 ’”)smnk) +1—6 Z log(HM2=E) cos 8(LET ) cos 8k. Taking p =
r=1 r=1

2N=11and (= 111 in (34), we have

K=

30172 10 (—2%2 (1 1

T o M T eesntmin

22x%sinn(217/11) | k)
242 n=1

k
)COS” T 211 —cosn(z/11)) ™

2172 rn
_ 11k, k { }
242 < €

Here we provide MATLAB coding for verification FS: syms n

pi. 2= ((301xpi.2)./242) +symsum(((—2* pi.2./121)x (11 —1./(1 —cos(n* pi./11)))) * cos(n*
pi)+ ((22 % pi.2./121) * (sin(n 21 % pi./11)./(1 — cos(n* pi./11)))) * sin(n * pi),n,1,10) — (2
pi2./242) x (11 — 1. /(1 — cos(pi))) * cos(11 * pi)
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3.1, Input Signal 3.2 Output Signal With Constant Amplitude
25 1346
B
20r 4 131 k|
15 k| 125 |
L
L -
= o
E
10 B 12 B
5 B Mna B
0 L L I L . . L 11 L 1 . 1 L L .
1 15 2 25 3 35 4 45 5 1 15 2 25 3 35 4 45 5
k k
3.3. Output Cosine Signals 3.4. Output Sine Signals
155 "3 15
L 4 alcos(k) alsink)
1 /] —& —azeosi2i) |f ot I |
<3 x| ety a3oos(3k) i a3sin3k) H
N ) /| —& —adcos(k) | —& = adsinidk)
05t iy 5 et
= B N E: " e
ol
2 05 ERie s SRS
(&) BT S
«® T,
“x
At
15k
2L
25 L L I L . . L .15 L 1 . 1 L L .
1 15 2 25 3 35 4 45 5 1 15 2 25 3 35 4 45 5
k k

Discussion: The diagrams 3.2 to 3.4 give 9 components of the decomposition of the func-
tion u(k) = k? (input signal). One can get the remaining 13 components easily.

4 Conclusion:

The Fourier series and its transforms have wide range of applications specially in the field
of digital signal process. For functions which have no usual Fourier series expression, we
are able to find finite Fourier series expression (decomposition) using summation solution
of generalized difference equation. The method discussed in this paper leads to several
applications in signal process.
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