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Finite Fourier Decomposition of Signals Using Generalized
Difference Operator
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Abstract: In this paper, we introduce discrete inner product of two functions, discrete orthogo-
nal and orthonormal system of functions and develop finite Fourier series for polynomial facto-
rial, polynomial, exponential, rational and logarithm functions using the inverse of generalized
difference operator
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1 Introduction

In Fourier analysis, a signal is decomposed into its constituent sinusoids. In the reverse
by operating the inverse Fourier transform, the signal can be synthesized by adding up its
constituent frequencies. Many signals that we encounter in daily life such as speech, auto-
mobile noise, chirps of birds, music etc. have a periodic or quasi-periodic structure, and that
the cochlea in the human hearing system performs a kind of harmonic analysis of the input
audio signals in biological and physical systems [11]. The Fourier series decomposes the
given input signals into a sum of sinusoids. By removing the high frequency terms(noise)
of Fourier series and then adding the remaining terms can yield better signals [4].

Finite Fourier series is a powerful tool for attacking many problems in the theory
of numbers. It is related to certain types of exponential and trigonometric sums. It may
therefore be expanded into a finite Fourier series of the form

f (αµ) =
m−1
∑
j=0

g( j)αµ j(µ = 0,1, · · · ,m−1). The orthogonality relation

m−1
∑
j=0

αa jα−b j =

{
m (a ≡ b(mod m)),

0 (a ̸≡ b(mod m)),
enables us to determine the finite Fourier coef-
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ficients g(k) explicitly by means of the formula g(k) =
1
m

m−1
∑

µ=0
f (αµ)α−µk [2]. If we are

given k distinct complex numbers z0,z1, · · · ,zk−1, then there is one and only one polynomial
P(x) = ζ0 + ζ1x+ · · ·+ ζk−1xk−1 satisfying the equations P(ων) = zν(ν = 0,1, · · · ,k− 1)
[10].

A finite Fourier series: η(t) = A0 +
N/2
∑

q=1
Aq cos(qσ1t)+

N/2−1
∑

q=1
Bq sin(qσ1t), where

η = sea surface elevation (m), t = time (s), A0 = recond mean (m), N = total number of
sampling points, Aq and Bq = Fourier coefficients (m), q = harmonic component index (in
the frequency domain) and σ1 = fundamental radian frequency, is used in [6]. The sum of

N sine waves defined over the time interval, 0 ≤ t ≤ T : y =
N
∑

n=1
an cos(ωnt+ϕn), 0 ≤ tn ≤ T ,

an ≥ 0, 0 ≤ ϕn < 2π , where an is amplitude and t is time, is also a finite Fourier series[3].
In [7], the authors describe an efficient formulation, based on a discrete Fourier series ex-
pansion, of the analysis of axi-symmetric solids subjected to non-symmetric loading. They
have discussed the Fourier series approach, the discrete Fourier series representation prob-
lems such as the presence of Gibb’s phenomenon and the lack of conformity of elements.
Here we arrive a new type of finite Fourier series for functions (signals) by defining discrete
orthonormal family of functions using inverse generalized difference operator ∆−1

ℓ . This fi-
nite Fourier series becomes Fourier series as ℓ tends to zero. Suitable examples verified by
MATLAB are inserted to illustrate the findings.

2 Preliminaries

The primitive Nth roots of unity (zN = 1 but zr ̸= 1;0 < r < N)

zn = ei(2π/N)n, n = 1,2,3, ...,N −1, (1)

where n and N are co-prime, satisfies the geometric series expressed as

N−1

∑
k=0

zk
n = ∆−1zk

n

∣∣∣N
k=0

=
zN

n −1
zn −1

=

{
1 i f N = 1
0 i f N > 1.

(2)

From (1) and (2), the complex discrete-time sequence er(k) is defined as

en(k) = (zn)
k = ei(2π/N)nk; n, k = 0,1,2, ...,N −1. (3)

For the positive integers n, r and N, the en(k) defined in (3) satisfies the identity

N−1

∑
k=0

en(k) = ∆−1en(k)
∣∣∣N
k=0

= ∆−1ei(2πn/N)k
∣∣∣N
k=0

=

{
N i f n = rN
0 i f n ̸= rN.

(4)
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This mathematical property is utilized with the factorization into two orthogonal exponen-
tial functions, {en(k)} satisfying

∆−1en(k)e∗m(k)
∣∣∣N
k=0

= ∆−1ei( 2π(n−m)k
N )

∣∣∣N
k=0

=

{
N i f n−m = rN
0 i f n−m ̸= rN,

(5)

where m,n and r are integers, and the notation (∗) represents the complex conjugate. The
equation (5) induces us to define a generalized discrete orthonormal system and a finite
Fourier series by replacing ∆ by ∆ℓ and en(k) by un(k). Nonexistence of solutions of certain
type of second order generalized α-difference equation with the operator ∆α(ℓ) has been dis-
cussed in [9]. When α = 1 the operator ∆α(ℓ) becomes the generalized difference operator
∆ℓ.

Definition 1 [8] Let u(k), k ∈ [0,∞), be a real or complex valued function and ℓ > 0 be
fixed. Then, the generalized difference operator ∆ℓ on u(k) is defined as

∆ℓu(k) = u(k+ ℓ)−u(k), (6)

and its inverse is defined as if there is a function v(k) such that

∆ℓv(k) = u(k), then v(k) = ∆−1
ℓ u(k)+ c j, f or k ∈

{
j+ rℓ

}∞

r=0
, (7)

where c j is constant, j = k− [k/ℓ]ℓ and [k/ℓ] is the integer part of k/ℓ.

Lemma 1 [8] Let sm
r and Sm

r are the Stirling numbers of first and second kinds, k(0)ℓ = 1,
k(1)ℓ = k and k(m)

ℓ = k(k− ℓ)(k−2ℓ) · · ·(k− (m−1)ℓ). Then we have

k(m)
ℓ =

m

∑
r=1

sm
r ℓ

m−rkr, km =
m

∑
r=1

Sm
r ℓ

m−rk(r)ℓ , ∆ℓk
(m)
ℓ = (mℓ)k(m−1)

ℓ (8)

and

∆−1
ℓ k(m)

ℓ =
k(m+1)
ℓ

ℓ(m+1)
, ∆−1

ℓ km =
m

∑
r=1

Sm
r ℓ

m−rk(r)ℓ

(r+1)ℓ
. (9)

Lemma 2 [5] Let p be real, ℓ > 0, k ∈ (ℓ, ∞) and pℓ ̸= m2π . Then, we have

∆−1
ℓ sin pk =

sin p(k− ℓ)− sin pk
2(1− cos pℓ)

+ c j, (10)

∆−1
ℓ cos pk =

cos p(k− ℓ)− cos pk
2(1− cos pℓ)

+ c j (11)

and
∆−1
ℓ (u(k)w(k)) = v(k)∆−1

ℓ w(k)−∆−1
ℓ (∆−1

ℓ w(k+ ℓ)∆ℓu(k)). (12)
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Remark 1 From (10) and (11), we have

∆−1
ℓ sin pk

∣∣∣2π

0
= 0 = ∆−1

ℓ cos pk
∣∣∣2π

0
. (13)

Lemma 3 [8] If u(k) is a bounded function on [a,b] and ℓ=
b−a

M
, then we have

∆−1
ℓ u(k)

∣∣∣b
a
=

M

∑
r=1

u(b− rℓ) =
M−1

∑
r=0

u(a+ rℓ). (14)

In general, when k ∈ (ℓ,∞), we express

∆−1
ℓ u(k)

∣∣∣k
j
=

[ k
ℓ ]

∑
r=1

u(k− rℓ) =
[ k
ℓ ]−1

∑
r=0

u( j+ rℓ), j = k− [k/ℓ]ℓ. (15)

3 Discrete Orthogonal System and Finite Fourier Series

Since a finite Fourier series is described by a family of discrete orthonormal functions,
we introduce a orthogonal and further a orthonormal system of functions by defining the
discrete inner product.

Definition 2 Let u(k) and v(k) be bounded functions defined on [a,b] and

ℓ=
b−a

M
. The discrete inner product of u and v with respect to ℓ is defined as

(u,v)ℓ = ℓ∆−1
ℓ u(k)v∗(k)

∣∣∣b
a
= ℓ

M−1

∑
r=0

u(a+ rℓ)v∗(a+ rℓ) (16)

and the discrete ℓ−norm of u, denoted by ∥u∥(ℓ) is defined as

∥u∥(ℓ) = (u,u)1/2
ℓ =

{
ℓ∆−1

ℓ |u(k)|2
∣∣∣b
a

}1/2
=

{
ℓ

M−1

∑
r=0

|u(a+ rℓ)|2
}1/2

. (17)

Definition 3 Let I = [a, b], ℓ=
b−a

M
and Sℓ= {ϕ0,ϕ1,ϕ2, ...ϕM} be a collection of bounded

complex valued functions defined on I. If (ϕn,ϕm)ℓ = 0 whenever m ̸= n, the collection Sℓ is
said to be a discrete orthogonal system, if in addition ∥ϕn∥ℓ = 1 for each n, then Sℓ is said
to be discrete orthonormal.
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Definition 4 Let Sℓ = {ϕ0,ϕ1,ϕ2, ...ϕM} be an orthonormal on I = [a,b], ℓ=
b−a

M
, u(k) is

a bounded function on I and cn = (u,ϕn)ℓ, (say finite Fourier coefficients). Then the finite
Fourier series of u(k) related to Sℓ is defined as

u(k) =
M

∑
n=0

cnϕn(k), k ∈
{

a+ rℓ
}M−1

r=0
. (18)

Example 1 Let I = [a,a+2π], ℓ=
π
N

(here M = 2N) and

ϕ0(k) =
1√
2π

, ϕ2n−1(k) =
sinnk√

π
, ϕ2n(k) =

cosnk√
π

, n = 1,2, · · · , N. (19)

By (13) and ∆−1
ℓ k(0)ℓ

∣∣∣a+2π

a
=

2π
ℓ

, we find that Sℓ = {ϕ0,ϕ1,ϕ2, ...ϕ2N} is a system of discrete
orthonormal functions on I.
From (18), the finite Fourier series related to (19) is given by

u(k) =
a0

2
+

N−1

∑
n=1

(an cosnk+bn sinnk)+
aN

2
cosNk, k ∈

{
a+ rℓ

}2N−1

r=0
, (20)

where an =
ℓ

π
∆−1
ℓ (u(k)cosnk)

∣∣∣a+2π

a
, bn =

ℓ

π
∆−1
ℓ u(k)sinnk

∣∣∣a+2π

a
are got by (14).

Theorem 3.1 Let u(k) =
M
∑

n=0
cnϕn(k), k ∈

{
a+ rℓ

}M−1

r=0
be the finite Fourier series of u(k)

relative to a discrete orthonormal set Sℓ. Then we have

M

∑
n=0

|cn|2 = ∥u∥2
(ℓ) (Discrete Parseval′s Formula) (21)

Proof Since Sℓ is orthonormal and ∆−1
ℓ is linear, (21) follows from (16), (17), (18) and the

Definition 3.

�

Theorem 3.2 Let k ∈ (−∞,∞) and ℓ > 0. If nℓ ̸= 2mπ , then we have

∆−1
ℓ k(m)

ℓ cosnk =
m

∑
t=0

t+1

∑
r=0

(
t +1

r

)
(m)

(t)
1 ℓtk(m−t)

ℓ cosn(k− ℓ+ rℓ)

(−1)r−1
(
2(cosnℓ−1)

)t+1 (22)

and

∆−1
ℓ k(m)

ℓ sinnk =
m

∑
t=0

t+1

∑
r=0

(
t +1

r

)
(m)

(t)
1 ℓtk(m−t)

ℓ sinn(k− ℓ+ rℓ)

(−1)r−1
(
2(cosnℓ−1)

)t+1 . (23)
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Proof Taking u(k) = k(1)ℓ , w(k) = cosnk in (12) and using (9) and (11), we get

∆−1
ℓ

(
k(1)ℓ cosnk

)
= k(1)ℓ

(cosn(k− ℓ)− cosnk
2(1− cosnℓ)

)
−∆−1

ℓ

(cosnk− cosn(k+ ℓ)

2(1− cosnℓ)
ℓ
)
.

Since ∆−1
ℓ is linear, applying (11) for both cosnk and cosn(k+ ℓ), we get

∆−1
ℓ

(
k(1)ℓ cosnk

)
= k(1)ℓ

(cosn(k− ℓ)− cosnk
2(1− cosnℓ)

)

−
ℓ
(

cosn(k− ℓ)−2cosnk+ cosn(k+ ℓ)
)

(2(1− cosnℓ))2 . (24)

Taking u(k) = k(2)ℓ , w(k) = cosnk in (12), and using (9), (11) and (24), we get

∆−1
ℓ

(
k(2)ℓ cosnk

)
=

k(2)ℓ (cosn(k− ℓ)− cosnk)
2(1− cosnℓ)

−
2ℓk(1)ℓ

(
cosn(k− ℓ)−2cosnk+ cosn(k+ ℓ)

)
(2(1− cosnℓ))2

+
(1ℓ)(2ℓ)

(
cosn(k− ℓ)−3cosnk+3cosn(k+ ℓ)− cosn(k+2ℓ)

)
(2(1− cosnℓ))3 (25)

which can be expressed as

∆−1
ℓ k(2)ℓ cosnk =

2
∑

t=0

t+1
∑

r=0

(t+1
r

)(2)(t)1 ℓtk(2−t)
ℓ cosn(k− ℓ+ rℓ)

(−1)r−1
(
2(cosnℓ−1)

)t+1 .

Continuing the above process, we get the relation (22).
Now, (23) follows by replacing cosnk by sinnk in (22).

�

Corollary 1 When I = [0, 2π], ℓ=
π
N

, k ∈
{

rℓ
}2N−1

0
, the finite Fourier coefficients an and

bn for the polynomial factorial k(m)
ℓ are given by

a0 =
ℓ

π
∆−1
ℓ k(m)

ℓ

∣∣∣2π

0
=

(2π)(m+1)
ℓ

π(m+1)
, (26)

an =
ℓ

π
∆−1
ℓ k(m)

ℓ cosnk
∣∣∣2π

0
=

m−1

∑
t=0

t+1

∑
r=0

(
t +1

r

)
(m)

(t)
1 ℓt(2π)(m−t)

ℓ cosn(r−1)ℓ

N(−1)r−1
(
2(cosnℓ−1)

)t+1 (27)

and

bn =
ℓ

π
∆−1
ℓ k(m)

ℓ sinnk
∣∣∣2π

0
=

m−1

∑
t=0

t+1

∑
r=0

(
t +1

r

)
(m)

(t)
1 ℓt(2π)(m−t)

ℓ sinn(r−1)ℓ

N(−1)r−1
(
2(cosnℓ−1)

)t+1 . (28)
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Proof The proof follows by applying the limit 0 to 2π in (22) and (23), and then multiplying
by ℓ/π .

�

Example 2 From (20), and using (26), (27) and (28) for a0, an and bn respectively, we get
the finite Fourier series for the polynomial factorial k(m)

ℓ as

k(m)
ℓ =

a0

2
+

N−1

∑
n=1

(an cosnk+bn sinnk)+
aN

2
cosNk, k ∈

{
rℓ
}2N−1

r=0
. (29)

In particular, when N = 20, ℓ=
π
20

and m = 15, (29) becomes,

(k)(15)
π/20 =

(2π)16
π/20

32π
+

19
∑

n=1
(an cosnk+bn sinnk)+

a20

2
cos20k, k ∈

{rπ
20

}39

r=0
.

Theorem 3.3 Let k ∈ (−∞,∞), ℓ > 0 and nℓ ̸= m2π , then we have

∆−1
ℓ kp cosnk =

p

∑
m=1

m

∑
t=0

t+1

∑
r=0

(
t +1

r

)
Sp

m(m)
(t)
1 k(m−t)

ℓ cosn(k− ℓ+ rℓ)

(−1)r−1ℓm−t−p
(
2(cosnℓ−1)

)t+1 (30)

and

∆−1
ℓ kp sinnk =

p

∑
m=1

m

∑
t=0

t+1

∑
r=0

(
t +1

r

)
Sp

m(m)
(t)
1 k(m−t)

ℓ sinn(k− ℓ+ rℓ)

(−1)r−1ℓm−t−p
(
2(cosnℓ−1)

)t+1 . (31)

Proof The proof follows by second term of (8) and applying (22).

�

Corollary 2 When I = [0, 2π], ℓ =
π
N

, the finite Fourier coefficients an and bn for n =

0,1,2, · · · ,N for polynomial kp are given by

an =
ℓ

π
∆−1
ℓ kp cosnk

∣∣∣2π

0
=

p−1

∑
m=1

m

∑
t=0

t+1

∑
r=0

(
t +1

r

)
Sp

m(m)
(t)
1 (2π)(m−t)

ℓ cosn(r−1)ℓ

(−1)r−1Nℓm−t−p
(

2(cosnℓ−1)
)t+1 (32)

and

bn =
ℓ

π
∆−1
ℓ kp sinnk

∣∣∣2π

0
=

p−1

∑
m=1

m

∑
t=0

t+1

∑
r=0

(
t +1

r

)
Sp

m(m)
(t)
1 (2π)(m−t)

ℓ sinn(r−1)ℓ

(−1)r−1Nℓm−t−p
(

2(cosnℓ−1)
)t+1 . (33)

Proof The proof follows by applying the limits 0 to 2π in (30) and (31), and then multiply-
ing by ℓ/π .
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�

Corollary 3 From (20), and using (32) and (33) for an and bn respectively, we get the finite
Fourier series for the polynomial kp as

kp =
a0

2
+

N−1

∑
n=1

(an cosnk+bn sinnk)+
aN

2
cosNk, k ∈

{
rℓ
}2N−1

r=0
. (34)

Corollary 4 Let I = [0,2π], ℓ=
π
N

, and c > 0 be a constant. Then, for k ∈
{

rℓ
}2N−1

r=0
, the

finite Fourier series of the geometric function ck is given by

ck =
ℓ

2π

(c2π −1
cℓ−1

)
+

ℓ

π
N−1
∑

n=1

(
cosnk

[2π/ℓ]
∑

r=1
c(2π−rℓ) cosnrℓ

−sinnk
[2π/ℓ]

∑
r=1

c(2π−rℓ) sinnrℓ
)
+

ℓ

2π
cosNk

[2π/ℓ]

∑
r=1

c(2π−rℓ) cosNrℓ. (35)

Proof The proof follows by taking u(k) = ck in (20), and then applying (15).

�

The following example is a verification of Corollary 4

Example 3 Taking c = 8, N = 100 and ℓ=
π

100
in (35), we have

8k =
82π −1

200(8π/100 −1)
+

1
100

99
∑

n=1

( 200
∑

r=1
8(2π−r(π/100)) cos

nrπ
100

cosnk

−
200
∑

r=1
8(2π−r(π/100)) sin

nrπ
100

sinnk
)
+

1
200

200
∑

r=1
cosrπ cos100k, k ∈

{ rπ
100

}199

r=0
.

Theorem 3.4 Let I = [2π,4π], m ∈ (−∞,∞), ℓ =
π
N

. Then the finite Fourier series of

rational function
1

km is given by

1
km =

ℓ

2π

[2π/ℓ]
∑

r=1

1
(4π − rℓ)m +

ℓ

π
N−1
∑

n=1

( [2π/ℓ]
∑

r=1

cosnrℓ
(4π − rℓ)m cosnk

−
[2π/ℓ]

∑
r=1

sinnrℓ
(4π − rℓ)m sinnk

)
+

ℓ

2π

[2π/ℓ]

∑
r=1

cosNrℓ
(4π − rℓ)m cosNk, k ∈

{
2π + rℓ

}2N−1

r=0
. (36)

Proof Taking a = 2π , u(k) =
1

km in (20) and applying (15), we get (36).

�
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The following example is a verification of the Corollary 3.4.

Example 4 Taking m = 5, N = 24, ℓ=
π
24

in (36), then we have

1
k5 =

1
48

48
∑

r=1

1
(4π − r(π/24))5 +

1
24

23
∑

n=1

( 48
∑

r=1

cosnr(π/24)
(4π − r(π/24))5 cosnk

−
48
∑

r=1

sinnr(π/24)
(4π − r(π/24))5 sinnk

)
+

1
48

48
∑

r=1

cosrπ
(4π − r(π/24))5 cos24k, k ∈

{
2π +

rπ
24

}47

r=0

Theorem 3.5 Let I = [π/8,17π/8], ℓ =
π
N

. Then, the finite Fourier series of the logarith-
mic function logk is given by

logk =
ℓ

2π

[2π/ℓ]
∑

r=1
log(17π

8 − rℓ)+
ℓ

π
N−1
∑

n=1

( [2π/ℓ]
∑

r=1
log(17π

8 − rℓ)cosn(17π
8 − rℓ)cosnk

+
[2π/ℓ]

∑
r=1

log(17π
8 − rℓ)sinn(17π

8 − rℓ)sinnk
)

+
ℓ

2π

[2π/ℓ]

∑
r=1

log
(17π

8
− rℓ

)
cosN

(17π
8

− rℓ
)

cosNk, k ∈
{π

8
+ rℓ

}2N−1

r=0
. (37)

Proof The proof follows by taking a =
π
8

, u(k) = logk in (20) and applying (15).

�

The following example is a verification of the Corollary 3.5

Example 5 Taking N = 8, ℓ=
π
8

in (37), for k∈
{

π+rπ
8

}15

r=0
, we have logk=

1
16

16
∑

r=1
log(17π−rπ

8 )+

1
8

7
∑

n=1

( 16
∑

r=1
log(17π−rπ

8 )cosn(17π−rπ
8 )cosnk

+
16
∑

r=1
log(17π−rπ

8 )sinn(17π−rπ
8 )sinnk

)
+

1
16

16
∑

r=1
log(17π−rπ

8 )cos8(17π−rπ
8 )cos8k. Taking p=

2, N = 11 and ℓ=
π
11

in (34), we have

k2 =
301π2

242
+

10
∑

n=1

(−2π2

121

(
11− 1

1− cosn(π/11)

)
cosnk+

22π2 sinn(21π/11)
121(1− cosn(π/11))

sinnk
)

−21π2

242
cos11k, k ∈

{rπ
11

}21

r=0
.

Here we provide MATLAB coding for verification FS: syms n
pi.∧2=((301∗ pi.∧2)./242)+symsum(((−2∗ pi.∧2./121)∗(11−1./(1−cos(n∗ pi./11))))∗cos(n∗
pi)+ ((22 ∗ pi.∧2./121) ∗ (sin(n ∗ 21 ∗ pi./11)./(1− cos(n ∗ pi./11)))) ∗ sin(n ∗ pi),n,1,10)− (2 ∗
pi.∧2./242)∗ (11−1./(1− cos(pi)))∗ cos(11∗ pi)
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Discussion: The diagrams 3.2 to 3.4 give 9 components of the decomposition of the func-
tion u(k) = k2 (input signal). One can get the remaining 13 components easily.

4 Conclusion:

The Fourier series and its transforms have wide range of applications specially in the field
of digital signal process. For functions which have no usual Fourier series expression, we
are able to find finite Fourier series expression (decomposition) using summation solution
of generalized difference equation. The method discussed in this paper leads to several
applications in signal process.
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