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Coupled Fixed Point Theorems in C*-Algebra-Valued
b-Metric Spaces

S. Radenović, P. Vetro, A. Nastasi, L. T. Quan

Abstract: In this paper, we give some coupled fixed point results in the framework of C∗-
algebra-valued b-metric spaces and in particular in the setting of C∗ algebra-valued metric
spaces. These results, with shorter proofs, generalize and improve other theorems recently in-
troduced. We have used a method of reducing coupled fixed point results to the respective ones
for mappings with one variable in the framework of b-metric spaces. Finally, two examples are
given to support our theoretical work.
Keywords: metric space, coupled fixed point.

1 Introduction and Preliminaries

The Banach contraction mapping principle is one of the most powerful and useful tools in
modern mathematics and has many generalizations. Currently, extending Banach contrac-
tion mapping principle by replacing the metric space with a generalized one and extend
theorem in this generalized structure are of great interest in mathematics. Many general-
ized metric spaces that have been introduced, have attracted many researching mathematics,
for example we point out: b-metric space, cone metric space, cone valued metric space or
tvs-cone metric space, cone b-metric space or cone metric type space, cone metric space
over Banach algebra, cone b-metric space over Banach algebra, C∗-algebra-valued metric
space, C∗-algebra-valued b-metric space, etc. Recently, using the notion and properties of
C∗-algebra (see [15]), several authors ([1], [2], [6], [10], [11], [12], [13], [14], [16], [18],
[19]) have introduced and considered the concepts of C∗-algebra-valued metric spaces as
well as C∗-algebra-valued b-metric spaces and have given some fixed point theorems for
self-mappings satisfying contractive conditions on such spaces. It is possible to find some
results concerning b-metric spaces in [3, 5].
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In this paper, some recent coupled fixed point results established for a complete C∗-
algebra valued b-metric space are generalized and improved, with much shorter proofs.
We have used a method to reducing coupled fixed point results to the respective ones for
mappings with one variable in the framework of b-metric spaces. Also, we have used the
fact that each C∗-algebra-valued b-metric space is a cone b-metric space over normal cone
with normal constant equal to 1.

Firstly, we begin with the basic concept of C∗-algebras. A real or a complex linear
space A is an algebra if vector multiplication is defined for every pair of elements of A
such that A is a ring with respect to both vector addition and vector multiplication and for
every scalar β and every pair of elements u,v ∈ A , we have β (uv) = (βu)v = u(βv). If A
is endowed with a submultiplicative norm ∥ ·∥, that is, ∥uv∥ ≤ ∥u∥∥v∥ for all u,v ∈A , then
(A ,∥ · ∥) is a normed algebra. A complete normed algebra is called Banach algebra. An
involution on the algebra A is a conjugate linear mapping ∗ : A → A such that

(1) u∗∗ = u;

(2) (uv)∗ = v∗u∗

for all u,v ∈ A . The pair (A ,∗) is called ∗-algebra. A Banach ∗-algebra A is a ∗-
algebra with a complete submultiplicative norm such that ∥u∗∥= ∥u∥ for all u ∈ A . Then,
a C∗-algebra is a Banach ∗-algebra such that ∥u∗u∥= ∥u∥2. The set C of complex numbers,
the set L(H) of all bounded linear operators on a Hilbert space H, and the set Mn(C) of
n× n-matrices are examples of C∗-algebras. If a normed algebra A admits a unit I, that
is, there exists an element I ∈ A such that Iu = uI = u for all u ∈ A , and ∥I∥= 1, we say
that A is an unital normed algebra. A complete unital normed algebra A is called unital
Banach algebra. In this paper, we will assume that A is an unital C∗-algebra with a unit
I. For the basic properties and results in the setting of C∗-algebras, the interested reader is
referred to [15] and the references therein.

Let A be a C∗-algebra. An element a ∈ A is called positive if a = a∗ and the spectrum
σ(a) of a is a subset of nonnegative real numbers. The set of positive elements in A is
denoted by A+. We define an order relation ≼ by using A+, where a ≼ b if a = b or b−a is
a positive element. We use the notation θ ≼ a to denote that a is a positive element, where
θ is the zero element in A . Now, we recall some properties of the elements of A+.

(j) The set A+ = {a∗a : a ∈ A } is a closed cone in A ;

(jj) if θ ≼ a ≼ b, then ∥a∥ ≤ ∥b∥;

(jjj) if θ ≼ a ≼ b, then θ ≼ λ ∗aλ ≼ λ ∗bλ for all λ ∈ A ;

(jv) if a,b ∈ A+ and ab = ba; then θ ≼ ab;
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The concept of C∗-algebra-valued b-metric space was introduced by Ma and Jiang [14]
as follows.

Definition 1. Let X be a nonempty set. A mapping db : X ×X → A+ is called C∗-algebra-
valued b-metric on X if there exists b ∈ A , with I ≼ b and ab = ba for all a ∈ A , such that
the following conditions hold:

(1) θ = db(u,v) if and only if u = v;

(2) db(u,v) = db(v,u) for all u,v ∈ X;

(3) db(u,v)≼ b(db(u,z)+db(z,v)) for all u,v,z ∈ X.

Then (X ,A ,db) is called a C∗-algebra-valued b-metric space.

If b= I, from Definition 1 we obtain the concept of C∗-algebra-valued metric introduced
by Ma et al. [13]. In this case use d to denote the C∗-algebra-valued metric and (X ,A ,d)
is called a C∗-algebra-valued metric space.

Let (X ,A ,db) be a C∗-algebra-valued b-metric space and {pn} ⊂ X be a sequence.

(i) {pn} is called convergent to p ∈ X , written as lim
n→∞

pn = p, if lim
n→∞

∥db(pn, p)∥= 0.

(ii) {pn} is called Cauchy if lim
n,m→∞

∥db(pn, pm)∥= 0.

(iii) (X ,A ,db) is called complete if each Cauchy sequence is a convergent sequence.

The following remark is used to obtain fixed point results in C∗-algebra-valued b-metric
spaces.

Remark 2. Every C∗-algebra-valued b-metric on a set X induces on X a b-metric Db with
constant ∥b∥, where Db : X ×X → [0,∞) is defined by Db(u,v) = ∥d(u,v)∥ for all u,v ∈ X.
To verify that Db is a b-metric is sufficient to show that the triangular inequality holds. By
using (jj), we get

Db(u,v) = ∥d(u,v)∥ ≤ ∥b(d(u,z)+d(z,v))∥
≤ ∥b∥(∥d(u,z)∥+∥d(z,v)∥)
= ∥b∥(Db(u,z)+Db(z,v)).

If b = I, then we use the notation D instead of Db. In this case D is a metric on X . Also,
note that if (X ,A ,db) is a complete C∗-algebra-valued b-metric space, then (X ,Db,∥b∥), is
a complete b-metric space.

Ma et al. proved this main result.



84 S. Radenović, P. Vetro, A. Nastasi, L. T. Quan

Theorem 3 ([13], Theorem 2.1). Let (X ,A ,d) be a complete C∗-algebra-valued metric
space, and let T : X → X be a mapping. Assume that there exists α ∈ A , with ∥α∥ < 1,
such that

d(Tu,T v)≼ α∗d(u,v)α, for all u,v ∈ X . (1)

Then T has a unique fixed point in X.

Now, using Remark 2 with b = I, we deduce that Theorem 2.1 of [13] is a consequence
of Banach contraction principle (see [10], Theorem 2).

2 Main results

In the following part of our paper we consider, extend, generalize, unify, improve and enrich
some results of coupled fixed point in the framework of C∗-algebra-valued b-metric space.
Firstly, we note that if (X ,A ,db) is a complete C∗-algebra-valued b-metric space, then
(X ×X ,A ,db+) is also a complete C∗-algebra-valued b-metric space, where db+ (Y,V ) =
db+ ((x,y) ,(u,v)) = db (x,u)+db (y,v) , for all Y = (x,y) ,V = (u,v) ∈ X ×X . Also, to each
mapping T : X×X →X , we associate the mapping GT : X×X →X×X defined by GT (Y )=
GT (x,y) = (T (x,y) ,T (y,x)) for all Y (x,y) ∈ X ×X . A point (x,y) ∈ X ×X is a fixed point
of T , if T (x,y) = x and T (y,x) = y. Note that T has a unique coupled fixed point if and only
if GT has a unique fixed point.

We recall some results in the setting of b-metric space.

Lemma 4 ([9], Corollary 3.9). Let (X ,D,b) be a complete b-metric space, and let T : X →
X satisfy

D(Tu,T v)≤ a1D(u,v)+a2D(u,Tu)+a3D(v,T v)+a4D(u,T v)+a5D(v,Tu) (2)

for all u,v ∈ X where ai, (i = 1, ...,5), are nonnegative constant such that

2ba1 +(b+1)(a2 +a3)+(b2 +b)(a4 +a5)< 2.

Then T has a unique fixed point.

Lemma 5 ([5], Theorem 2.1). Let (X ,D,b) be a complete b-metric space, and let T : X →X
be a mapping such that for some λ ∈ [0,1)

D(Tu,T v)≤ λD(u,v) (3)

holds for all u,v ∈ X . Then T has a unique fixed point z, and for every u0 ∈ X , the sequence
{T nu0} converges to z.
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Proof. Firstly, if λ ∈ [0, 1
b) the proof follows from Lemma 4 with a1 = λ and a2 = a3 =

a4 = a5 = 0. Therefore, let λ ∈ [1
b ,1). It is clear that (3) implies

D(T nu,T nv)≤ λ nD(u,v) , (4)

for all n ∈ N. Since λ n → 0 as n → ∞ we get that there exists k ∈ N such that λ k < 1
b .

Now, again according to Lemma 4 we obtain that T k, has a unique fixed point (say z).
Consequently, z is a unique fixed point of T . The proof of Lemma 5 is complete.

The following theorem is a Banach type result of coupled fixed point that generalizes
Theorem 2.1 of [2].

Theorem 6. Let (X ,A ,db) be a complete C∗-algebra-valued b-metric space. Suppose that
the mapping T : X ×X → X satisfies the following condition:

db (T (z,w) ,T (u,v))+db (T (w,z) ,T (v,u))≼ 2 [α∗db (z,u)α +α∗db (w,v)α] , (5)

for any z,w,u,v ∈ X , where α ∈ A with 2∥α∥2 < 1. Then T has a unique coupled fixed
point.

Proof. It is clear that the mapping F has a unique coupled fixed point if and only if the
mapping GT : X ×X → X ×X , where GT (Y ) = GT (x,y) = (T (x,y) ,T (y,x)), has a unique
fixed point. Now, the condition (5) implies that the relation

db+ (GT (Y ) ,GT (V ))≼
(√

2a∗
)

db+ (Y,V )
(√

2a
)
, (6)

holds for all Y = (z,w) ,V = (u,v) ∈ X ×X , where α ∈ A with 2∥α∥2 < 1. Using the
condition (jj), from (6) we get

Db(GTY,GFV )≤ 2∥α∥2Db(Y,V ),

for all Y,V ∈ X ×X . Since (X ×X ,Db,∥b∥) is a complete b-metric space the result follows
by Lemma 5 with λ = 2∥α∥2.

Remark 7. If in the previous Theorem 6 we suppose that b = I, then we obtain a result of
existence of a unique fixed point in the setting of C∗-algebra-valued metric space.

From Theorem 6 and Remark 7, we deduce the following result.

Corollary 8 ([19], Theorem 2.1). Let (X ,A ,d) be a complete C∗-algebra-valued metric
space. Suppose that the mapping F : X ×X → X satisfies the following condition:

d (F (z,w) ,F (u,v))≼ α∗d (z,u)α +α∗d (w,v)α, (7)

for any z,w,u,v ∈ X , where α ∈ A with 2∥α∥2 < 1. Then F has a unique coupled fixed
point.
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Proof. For all z,w,u,v ∈ X , from (7), we have

d (F (z,w) ,F (u,v))≼ α∗d (z,w)α +α∗d (u,v)α

and
d (F (w,z) ,F (v,u))≼ α∗d (w,z)α +α∗d (v,u)α.

It implies that

d (F (z,w) ,F (u,v))+d (F (w,z) ,F (v,u))≼
(√

2α∗
)
(d (z,w)+d (u,v))

(√
2α

)
.

Therefore, (7) implies (5) and we have that our Theorem 6 generalizes Theorem 2.1 of [2]
and if b = I Theorem 2.1 of [19].

The following example shows that Theorem 6 (with b = I) is a genuine generalization
of Theorem 2.1 of [19].

Example 9. Let A =M2×2 (R) endowed with the norm ∥A∥=maxi, j
∣∣ai j

∣∣, where ai j are the

entries of the matrix A ∈ M2×2 (R), and the involution given by A∗ =
(
A
)T

= AT . Clearly,

each matrix of type A =

[
α 0
0 β

]
∈ A+ if α,β ≥ 0. This implies that

[
α 0
0 β

]
≼[

δ 0
0 γ

]
if and only if α ≤ δ and β ≤ γ .

Let X = R, and

d (u,v) =
[
|u− v| 0
0 |u− v|

]
= |u− v|

[
1 0
0 1

]
= |u− v|I. (8)

Clearly, (X ,A ,d) is a complete C∗-algebra-valued metric space. We define a mapping
F : X ×X → X by F (z,w) = z−2w

7 . We say that (7) implies (5). We claim that F satisfies

condition (5) with respect to α =

[ 1
2 0
0 1

2

]
∈ A , but does not satisfy (7). Indeed, let us

assume that F satisfies (7), that is,

|F (z,w)−F (u,v)| I ≼ α∗ |z−u| Iα +α∗ |w− v| Iα
≼ α∗ (|z−u|+ |w− v|) Iα.

By using (jj), from the previous inequality, we get∣∣∣∣z−u−2(w− v)
7

∣∣∣∣≤ 1
4
(|z−u|+ |w− v|) ,
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for all z,w,u,v ∈ X . Putting z = u,w ̸= v we get 2
7 ≤ 1

4 . A contradiction.
Now, we prove that (5) holds, that is,

|F (z,w)−F (u,v)| I + |F (w,z)−F (v,u)| I ≼
(√

2α∗
)
(|z−u|+ |w− v|) I

(√
2α

)
,

for all z,w,u,v ∈ X or equivalently,∣∣∣∣z−u−2(w− v)
7

∣∣∣∣+ ∣∣∣∣w− v−2(z−u)
7

∣∣∣∣≤ 1
2
(|z−u|+ |w− v|) .

However, ∣∣∣∣z−u−2(w− v)
7

∣∣∣∣+ ∣∣∣∣w− v−2(z−u)
7

∣∣∣∣≤ 3
7
(|z−u|+ |w− v|) ,

for all z,w,u,v ∈ X , so the result follows from the fact that 3
7 < 1

2 .
Hence, all the conditions of Theorem 6 with b = I are satisfied. This means that F has

a unique coupled fixed point (0,0) , but Theorem 2.1 of [19] cannot be applied to F in this
example.

Example 10. Let A be the C∗- algebra considered in Example 9, X = R, b =

[
2 0
0 2

]
and

d (z,w) =
[
|z−w|2 0
0 |z−w|2

]
= |z−w|2

[
1 0
0 1

]
= |z−w|2 I,

Then (X ,A ,d) is a C∗-algebra-valued b-metric space. Let us define a mapping F : X×X →

X by F (z,w) = z√
2

for all z,w ∈ X and take α =

[
k 0
0 k

]
where 0 < k < 1√

2
. Now, F does

not satisfy (7). Indeed, let us suppose that (7) holds, that is∣∣∣∣z−u√
2

∣∣∣∣2 ≤ k2
(
|z−u|2 + |w− v|2

)
,

for all z,w,u,v ∈ X . Putting z ̸= u,w = v we get 1√
2
≤ k, which is contradiction.

Now, we shall prove that F satisfies condition (5), that is., for all z,w,u,v ∈ X holds:∣∣∣∣z−u√
2

∣∣∣∣2 + ∣∣∣∣w− v√
2

∣∣∣∣2 ≤ 2k2
(
|z−u|2 + |w− v|2

)
.

Hence, the last inequality holds for all z,w,u,v ∈ X if and only if 1
2 ≤ k. Since 1

2 < 1√
2

there

exists k ∈ [1
2 ,

1√
2
) such that the condition (5) holds while (7) does not satisfy. Hence, all the

conditions of Theorem 6 are satisfied. This means that F has a unique coupled fixed point,
but Theorem 2.1 of [2] cannot be applied to F in this example.
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The following is a Kannan type result of coupled fixed point.

Theorem 11. Let (X ,A ,db) be a complete C∗-algebra-valued b-metric space. Suppose
that the mapping T : X ×X → X satisfies the following condition

db (T (z,w) ,T (u,v))+db (T (w,z) ,T (v,u))

≼ α (db (T (z,w) ,z)+db (T (w,z) ,w))+β (db (T (u,v) ,u)+db (T (v,u) ,v)) , (9)

for any z,w,u,v ∈ X , where α,β ∈ A with 2∥b∥∥α∥+(∥b∥+ 1)∥β∥ < 2. Then T has a
unique coupled fixed point.

Proof. We say that the mapping F has a unique coupled fixed point if and only if the
mapping GT : X ×X → X ×X , where GT (Y ) = GT (x,y) = (T (x,y) ,T (y,x)), has a unique
fixed point. Now, the condition (9) implies that the relation

db+ (GT (Y ) ,GT (V ))≼ αdb+ (GT (Y ) ,Y )+βdb+ (GT (V ) ,V ) , (10)

holds for all Y,V ∈ X ×X . This means that GT is a Kannan type contractive mapping in the
framework of C∗-algebra-valued b-metric spaces. Using the condition (jj), from (10) we
deduce

Db(GTY,GTV )≤ ∥α∥Db(GTY,Y )+∥β∥Db(GTV,V ) for all Y,V ∈ X ×X .

Since (X ×X ,Db,∥b∥) is a complete b-metric space the result follows by Lemma 4 with
a1 = ∥α∥, a2 = ∥β∥ and a3 = a4 = a5 = 0.

If in the previous theorem we assume b = I, then we deduce the following corollary.

Corollary 12. Let (X ,A ,d) be a complete C∗-algebra-valued metric space. Suppose that
the mapping F : X ×X → X satisfies the following condition:

d (F (z,w) ,F (u,v))+d (F (w,z) ,F (v,u))

≼ α (d (F (z,w) ,z)+d (F (w,z) ,w))+β (d (F (u,v) ,u)+d (F (v,u) ,v)) (11)

for any z,w,u,v ∈ X , where α,β ∈ A with ∥α∥+∥β∥ < 1. Then F has a unique coupled
fixed point.

Remark 13. Theorem 11 generalizes Theorem 2.3 of [5] and Corollary 12 generalizes
Theorem 2.2 of [19].

The following is a Chatterjea type result of coupled fixed point.
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Theorem 14. Let (X ,A ,db) be a complete C∗-algebra-valued b-metric space. Suppose
that the mapping T : X ×X → X satisfies the following condition

db (T (z,w) ,T (u,v))+db (T (w,z) ,T (v,u))

≼ α (db (T (z,w) ,u)+db (T (w,z) ,v))+β (db (T (u,v) ,z)+db (T (v,u) ,w)) (12)

for any z,w,u,v ∈ X , where α,β ∈ A with ∥b∥(1+ ∥b∥)∥α∥+ ∥β∥) < 2. Then T has a
unique coupled fixed point.

Proof. We have to verify that the mapping GT : X ×X → X ×X has a unique fixed point.
Now, we see that (12) implies

db+(GTY,GTV ))≼ αdb+(GTY,V )+βdb+(GTV,Y ), (13)

for all Y,V ∈ X ×X , that is., GT is a Chatterjea type contractive mapping in the framework
of C∗-algebra-valued b-metric spaces. Using the condition (jj), from (13) we deduce

Db(GTY,GTV )≤ ∥α∥Db(GTY,V )+∥β∥Db(GTV,Y ) for all Y,V ∈ X ×X .

Since (X ×X ,Db,∥b∥) is a complete b-metric space the result follows by Lemma 4 with
a4 = ∥α∥, a5 = ∥β∥ and a1 = a2 = a3 = 0.

If in the previous theorem we assume b = I, then we deduce the following corollary.

Corollary 15. Let (X ,A ,d) be a complete C∗-algebra-valued metric space. Suppose that
the mapping F : X ×X → X satisfies the following condition:

d (F (z,w) ,F (u,v))+d (F (w,z) ,F (v,u))

≼ α (d (F (z,w) ,u)+d (F (w,z) ,v))+β (d (F (u,v) ,z)+d (F (v,u) ,w)) , (14)

for any z,w,u,v ∈ X , where α,β ∈ A with ∥α∥+∥β∥ < 1. Then F has a unique coupled
fixed point.

Remark 16. Theorem 14 is a generalization of Theorem 2.2 of [5] and Corollary 15 is a
generalization of Theorem 2.3 of [19].

Remark 17. The proofs in [2] and [19] are correct but with stronger assumptions. While,
our proofs are much shorter and nicer with weaker assumptions, that is., α,β ∈ A instead
α,β ∈ A ′

+ = {γ ∈ A+ : γδ = δγ for all δ ∈ A+}, for example. It is also worth to noticing
that examples as well as applications given in [2] and [19] support in the fact our approach.



90 S. Radenović, P. Vetro, A. Nastasi, L. T. Quan

References

[1] H. H. Alsulami, R.P. Agarwal, E. Karapinar, F. Khojasteh, A short note on C∗−valued con-
traction mappings, J. Inequal. Appl. (2016) 2016:50

[2] Chuanzhi Bai, Coupled fixed point theorems in C∗-algebra-valued b-metric spaces with appli-
cation, Fixed Point Theory Appl. (2016) 2016:70

[3] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis
1 (1993), 5–11.

[4] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, 1985.

[5] N.V. Dung, V.T. Le Hang, On relaxations of contraction constants and Caristi’s theorem in
b-metric spaces, J. Fixed Point Theory Appl. 18 (2016) 267-284.
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