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Abstract: Motivated by the classical brachistochrone we present a new pattern of finding the

shape of a vertical column that attains the maximum height if its material and volume are

prescribed. It comprises the optimal control problem with a free end point. Besides, the con-

stitutive equation of the column is such that it can suffer flexure, compression and shear. The

critical load of a heavy compressed column for the finite values of shear and extensional rigid-

ity and the novel use of the Pontryagin maximum principle with the corresponding first integral

yielding the non-vanishing optimal cross section as a solution of a quadratic equation are main

novelties of this work. The classical solution for the tallest column under selfweight is covered

as a special case for infinite values of shear and extensional rigidity.

Keywords: tallest column, generalized elastica with shear and axial strain, optimal control

problem with a free end point.

1 Introduction

Nonuniformity in formulating optimal control problems is a well known fact. A typical

example is the classical brachistochrone with different expressions of time to be minimized

and different control variables of either geometrical or physical nature, yielding the same

solution. Regarding the tallest column problem in a constant gravity field one can either fix

the volume and height of the column and maximize the lowest eigenvalue of the correspond-

ing equations describing the equilibrium configuration, or fix the eigenvalue and height and

minimize the volume, for example see [27], [36], [15], [32], [21], or [35], [18], [19] for

the first, and [25], [39], [6], [4], for the second approach. In both formulations once the

critical load and/or the corresponding volume are determined, one has to resize the column

i.e. to calculate the new shape as an effect of the different material distribution along the
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column axis, but the height of the column is known because it is specified at the beginning.

Namely, the height of the column is proportional to the fourth root of the critical load mul-

tiplied by the volume. Motivated by the classical brachistochrone problem formulated as

a time optimal problem, see [26], in this work we intend to reformulate the tallest column

problem. In doing so we are going to fix both: the eigenvalue and the volume. Namely,

we shall determine the eigenvalue from the stability condition of the column with constant

cross-section made of the same material that is used for the column that will be optimized.

Then for this eigenvalue (load) in equilibrium equations we impose the isoperimetric con-

straint to fix the volume and in turn weight to unity, and then maximize the height of the

column as a solution of the optimal control problem with a free end point.

We shall consider the column that is clamped at the base (lower point) and free at

the top. This type of boundary conditions, for the Bernoulli-Euler column, leads to the

singularity in the differential equations describing equilibrium of the column, see [27], since

the cross-section of the tallest column vanishes at the top. In the analysis that follows this

will be avoided by imposing a small concentrated force at the top end. Then by use of the

constitutive equations of the column that allows for compressibility of the column axis and

non zero shear angle, see [23], [8], [28], the optimization procedure will lead to a finite

value of the cross-section at the top of the column. The obtained equilibrium equations and

the ones of the classical tallest column problem are homotopic. Namely, decreasing the

parameters describing extensional and shear rigidity as well as the end load the solution of

the problem posed here leads to the classical solution i.e. the shape of the tallest unloaded

column under selfweight.

As stated by [20] as well as [17], the history of the tallest column problem includes

works of Leonardo da Vinci, Galileo Galilei and Leonhard Euler who started the study of

the tallest column in 1757. Indeed, problems of shape optimization for elastic columns/rods

have a long history, see [41], [33], [9], [14], or [16], [37], [5] and the references therein.

Besides the classical Bernoulli-Euler elastica the list can be enlarged with other types of

constitutive axioms. For example optimal columns in a sense of the generalized elastica

with shear and axial strain were analyzed in [38], [11] and [40] while the Eringen nonlocal

theory was used in [22] where the optimal shape of the Pflüger micro/nano beam was pre-

sented. It should be noted that these generalizations of the classical Bernoulli-Euler axiom

lead to non-vanishing cross-section of the optimal shapes. Therefore, in order to regularize

the cross-section of the tallest column we are going to include more physical parameters in

the rod/column model.

The current paper is arranged as follows. The differential equations describing equi-

librium of the heavy vertical compressed column of arbitrary cross-section, with shear and

axial strain, will be derived in Section 2. Next, the corresponding eigenvalue problem yield-

ing the critical load for the prismatic column with constant cross-section and finite values

of shear and extensional rigidity will be solved by use of the Goodman numerical method.

In Section 4 we present the new formulation of the tallest column problem as the optimal

control problem with a free boundary and use the advantages of the Pontryagin maximum

principle as well as the corresponding first integrals. The necessary conditions of optimal-
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ity will be derived and the heights of the uniform and the optimally shaped column will be

compared. In doing so a special attention is paid to the deformation of the column axis. In

Section 5, we show a possible regularization of the classical tallest column problem. Nu-

merical results for several values of the load and column parameters are shown in Section

6. The critical load and the corresponding numerical solutions of the optimal control prob-

lems will be presented. Finally, we comment on the obtained results, compare the solution

with the classical one, and give a remark on an useful inner space problem that can attract

practicing engineers as well as designers of high building structures.

2 The model

Consider a heavy, vertical, sharable and compressible naturally straight column of length

L clamped at the bottom point O, and free at the top end. Define a rectangular Cartesian

coordinate system xOy whose x axis coincides with the column axis in the virginal state and

y axis that is perpendicular to x axis. The system under consideration with some details is

sketched in Fig. 1.

Let S and s respectively be the arc lengths of the column axis in the undeformed and

deformed state respectively, measured from the end point O. We assume that the column has

a variable cross-section of area A = A(S) , S ∈ [0,L] . As in [27], at the free end the column

is loaded by a concentrated force of constant intensity P ≥ 0 acting parallel to the x axis in

opposite direction. For the analysis of the column element in the equilibrium configuration

L
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Fig. 1. Coordinate system and load configuration
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we introduce the components of the internal force at arbitrary cross-section along x and y

axes, say Fx and Fy respectively, together with the contact couple M and the specific weight

of the column material in the undeformed state q0, see Fig. 1b. Regarding the geometrical

description of this element in the xOy coordinate system we introduce the axial strain ε , i.e.

ε =
ds−dS

dS
,

the angle between the tangent to the column axis and the x axis, say θ , and the shear angle γ ,

i.e. the angle between the rotated (sheared, ”convected”) cross-section and the direction of

the normal to the column axis in the deformed state, as shown in Fig. 1c. In order to

relate internal shearing forces and shear angle to the introduced measures of deformation

we choose Haringx’s type of the internal forces decomposition, see [8] and [28]. Let e1, e2

respectively be the unit vector normal to the cross-section and the unit vector lying in the

cross-section. The rotation angle of the cross-section α , as the angle between e2 and Oy

axis, reads α = θ − γ .

In the analysis that follows we are going to compare the optimal (tallest) column with a

uniform column of the same volume, say Vu = AuLu, where Au = const. and Lu denote the

cross-section and the length of the uniform column respectively. Finally, we introduce the

volume of the column

V =

∫ L

0
A(S)dS,

that should meet an isoperimetric constraint

V =Vu, (1)

for some prescribed volume Vu, corresponding to the uniform column.

Next we follow the standard procedure of the mathematical theory of elastic rods. First,

from Fig. 1b we write the geometrical relations

dx

dS
= (1+ ε)cos θ ,

dy

dS
= (1+ ε)sinθ , (2)

and the corresponding differential equations describing the equilibrium of the column ele-

ment of length ds

dFx

dS
= q0A,

dFy

dS
= 0,

dM

dS
=−Fy (1+ ε)cosθ +Fx (1+ ε)sin θ . (3)

The boundary conditions corresponding to (2) and (3) read

x(0) = 0, y(0) = 0, α (0) = 0,
Fx (L) =−P, Fy (L) = 0, M (L) = 0.

(4)
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Secondly, in order to relate the physical and geometrical quantities introduced we follow

the arguments of [30] and [23]. Namely, for strain measures dα/dS, and Γ1, Γ2 defined by

dr

ds
= (1+Γ1)e1 +Γ2e2,

where r represents the position vector of an arbitrary point on the column axis in the de-

formed state, it follows that

Γ1 = (1+ ε)cos(θ −α)−1,

Γ2 = (1+ ε)sin(θ −α). (5)

Denoting the components of the contact force along the unit vectors e1 and e2, by N1 and

N2 respectively, as shown in Fig. 1c, the constitutive equations/axioms of the column read

N1 = EAΓ1, N2 =
GA

k
Γ2, M = EI

dα

dS
, (6)

where E is the modulus of elasticity, G is the shear modulus, I is the second moment of

inertia of the cross-section and k is the shear correction factor that depends on the geometry

of the cross section and on the material, see [34]. For linearly elastic isotropic materials

the following relation holds E = 2(1+ν)G with ν being the Poisson’s ratio. The products

EA and GA are also known as extensional and shear rigidity respectively. The constitutive

equations (6) were recently reexamined in [28] for problems dealing with cantilever beams

under different end loads. As the next step we refer to Fig. 1c again, and get the following

expressions

N1 = Fx cosα +Fy sin α ,

N2 =−Fx sinα +Fy cosα , (7)

representing Haringx’s type of the internal forces decomposition in an arbitrary cross sec-

tion of the column.

For the time being, we can omit x and y from the analysis and proceed by integrating

(3)2 with (4)5 to conclude that Fy = 0 for S ∈ [0,L] so eqs. (7) and (3)3 can be simplified.

Next step is to eliminate ε and θ from (3)3 by the use of (5), (6) and (7). Namely, after some

algebra, we get the following two-point boundary value problem describing the equilibrium

configuration of the column under consideration

dFx

dS
= q0A,

dα

dS
=

M

EI
,

dM

dS
= Fx

(

Fx

EA
− kFx

GA
+

1

cosα

)

sinα cosα , (8)

Fx =−P, α (0) = 0, M (L) = 0. (9)
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The corresponding linearized problem reads

dFx

dS
= q0A,

dα

dS
=

M

EI
,

dM

dS
= Fx

(

Fx

EA
− kFx

GA
+1

)

α , (10)

and is to be solved with (9). The bending rigidity EI in (10) and the cross-section of the

column A are related, i.e,

EI = EψA2,

where ψ is a constant (for a circular cross-section ψ = 1/(4π)). Note that for infinite

values of extensional and shear rigidity, i.e. EA → ∞, GA → ∞ we get the classical case

corresponding to the Bernoulli-Euler bending theory.

In order to get the vertical load at the arbitrary cross section we integrate (8)1 with (9)1

yielding

Fx (S) =−P−q0

∫ L

S
A(S)dS, (11)

and further

Fx (0) =−P−q0Vu, (12)

where we used the isoperimetric constraint (1). Namely by use of (11) due to the homogen-

ity of the column q0 = const., the isoperimetric condition can be expressed in terms of

either volume (1) or the vertical force at the bottom (12).

Next we introduce the force unit (weight of the uniform column) F = q0AuLu and the

following dimensionless quantities

t =
S

Lu

, a =
A

Au

, f =
Fx

F
, κ =

P

F
,

m =
MLu

EψA2
u

, β = k
F

GAu

, µ =
F

EAu

,

λ =
q0L4

u

EψVu

, h =
L

Lu

, τ =
s

Lu

. (13)

The values β = 0 and µ = 0 correspond to the classical Bernoulli-Euler elastica. Having

in mind that β = 2k(1+ ν)µ and assuming ν > 0 and k > 1, (for a circular cross-section

k = 1.11), in the following we shall assume that β > µ . By use of (13) we define (·)· =
d (·)/dt for t ∈ [0,h] so the dimensionless form of boundary value problem (10), (9) reads

ḟ = a, α̇ =
m

a2
, ṁ = λα

(

f +(µ −β )
f 2

a

)

, (14)

f (h) =−κ , α (0) = 0, m(h) = 0. (15)
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Also, the dimensionless vertical force (11) and its value at the bottom (12) become

f (t) =−κ −
∫ h

t
adt, (16)

f (0) =−κ −1, (17)

where we used proposed isoperimetric condition.

Two conclusions may be drawn from the linear boundary value problem (14), (15).

First: the shear and extensibility effects are of the same order as shown in (14)3. There are

many results of the generalized plane elastica confirming the opposite influence of these

effects on the critical buckling load: increasing β the critical load λ decreases, while in-

creasing µ the critical load λ increases, see [3] and the references therein. Secondly, for

any λ the problem (14), (15) has a trivial solution say f given by (16), α = 0, m = 0, cor-

responding to the state in which the column axis remains straight. In order to determine the

stability boundary of the column for given κ , β and µ we intend to determine the critical

load parameter λ for which the boundary value problem (14), (15) has more then one solu-

tion. Therefore, as a preparatory result for the tallest column problem comprising shear and

axial strain, we turn to the critical load problem for the uniform heavy compressed column

with constitutive equations (6).

3 The critical load of the uniform column

Recall that the uniform column corresponds to A(S) = Au = const., for S ∈ [0,L] , with

L = Lu and in turn, a = a(t) = 1, for t ∈ [0,h] with h = 1, see (13). In order to determine λ
ensuring the nontrivial solution of (14)2,3, (15)2,3 for a = 1, h = 1, and for given values of

β ,µ and κ , first we use (16) to find

f (t) =−κ − (1− t) . (18)

Introducing a new independent variable ξ = 1− t , we get f = −(κ +ξ ). Then, denot-

ing the derivatives with respect to ξ by prime from (14)2,3, (15)2,3 we get the eigenvalue

problem to be solved

α ′′+λ (κ +ξ )(1− (µ −β )(κ +ξ ))α = 0,

α ′ (0) = 0, α (1) = 0. (19)

In the special case when β = µ = 0, κ = 0 the eigenvalue reads λcr = 7.83735, and is

obtained as a zero of the Bessel function J−1/3 (·) , see [3], while for β = µ = 0, κ > 0 the

solution of the corresponding eigenvalue problem is given in terms of Airy functions while

λcr is obtained as a zero of a transcendental equation comprising several Bessel’s functions

and/or modified Bessel functions, see [42]. Since the eigenvalue problem (19) is more

complex we conclude that the advantages of closed form solution of (19)1, will be lessened

by the need to fulfil (19)2 and (19)3. Therefore, as suggested by [29], we shall give the
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original boundary value problem a numerical treatment ab initio. The strategy suggested

by Kovari was recognized in [7] and [8]. The eigenvalue problem of [7] comprises β > 0,
µ > 0, κ > 0 and is very similar to (19), but does not fit since we deal here with Haringx’s

type of the internal forces decomposition in an arbitrary cross section (or Haringx/Reissner

hypothesis as stated in [28]), while in [7] Engesser’s type of decomposition (or Engesser

hypothesis, see [28], i.e. in normal and shear directions) was applied. In [8] where a

heavy vertical column was treated, that is β > 0, µ > 0, κ = 0, the eigenvalue problems for

both Haringx’s and Engesser’s approach were derived. It was shown that the critical load

predicted by Haringx’s approach differs from the one predicted by Engesser’s approach.

Therefore the critical load in Table 2 of [8] corresponding to β > 0, µ > 0, κ = 0, obtained

by series solution does apply and can be used for a comparison with the numerical method

suggested in [24]. The latter we intend to apply here, for more general case β > 0, µ > 0,
κ > 0.

The Goodman method is based on the Bliss algorithm and is as follows. First, we

introduce η1 = α and η2 = α ′ and rewrite (19) in the following form

η ′
1 = η2, η ′

2 =−λ (k+ξ )(1− (µ −β )(κ +ξ ))η1,

η2 (0) = 0, η1 (1) = 0. (20)

Since the eigenfunctions are known to within a multiplicative constant it is permissible to

choose η1 (0) = 1 and an initial guess for λ , say λ ∗. Integrating (20) as an initial value

problem one gets the solution η∗
i (t) , i = 1,2 with η∗

1 (1) probably different from zero. To

obtain the correct solution the value η∗
1 (1) must be as small as possible. The adjustment

procedure requires variations defined by

δηi = ηi −η∗
i , (i = 1,2) , δλ = λ −λ ∗,

to be substituted in (20) there result to a first approximation

δη ′
1 = δη2,

δη ′
2 =−λ ∗ (k+ξ )(1− (µ −β )(κ +ξ ))δη1−

δλ (k+ξ )(1− (µ −β )(κ +ξ ))η∗
1 , (21)

representing the equations of differential corrections. With (21) we associate the adjoint

system

χ ′
1 = λ ∗ (k+ξ )(1− (µ −β )(κ +ξ ))χ2,

χ ′
2 =−χ , (22)

where δηi and χi, i = 1,2, are related by the Bliss algorithm i.e. the one dimensional form

of the Green theorem as

2

∑
i=1

[χi (1)δηi (1)− χi (0)δηi (0)] =−δλ×
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∫ 1

0
(k+ξ )(1− (µ −β )(κ +ξ ))η∗

1 (ξ )χ2 (ξ )dξ . (23)

Noting that δηi (0) , i= 1,2 are zero because of the specified and the chosen initial condition

as well as that δη1 (1) = η1 (1)−η∗
1 (1) = −η∗

1 (1) we pick χ1 (1) = 1 and χ2 (1) = 0 in

order to solve (22) by backward integration so from (23) the increment that will adjust λ ∗

reads

δλ =
η∗

1 (1)
∫ 1

0 (k+ξ )(1− (µ −β )(κ +ξ ))η∗
1 (ξ )χ2 (ξ )dξ

.

The procedure is then repeated for λ ∗ = λ + δλ until a declared convergence is achieved.

As stated by Goodman the method is truly equivalent to the Newton method of finding

roots of transcendental equations so there is no guarantee that the convergence will occur.

However if λ ∗ is chosen close to the eigenvalue λcr this iterative method is very efficient.

With this preparation done we may turn to the problem how can we increase the height

of the column by the material redistribution along its longitudinal axis.

4 The design of the tallest column

In order to change the cross-section of the column that will increase its height with respect

to the uniform one of the same volume/weight that will buckle for the same critical load we

go back to (2)1, (5)1, (6)1, and (7)1. Namely, after linearization of (2)1, (5)1 and (7)1 we get

dx = ds, Γ1 = ε and N1 = Fx respectively. Then (6)1 becomes Fx = EAε and further, by use

of (13), we get ε = f µ/a, and

dτ =

(

1+
f µ

a

)

dt. (24)

In case of µ > 0 the uniform column of cross-section a = 1 and the initial length h = 1 on

the trivial solution is of length h0
u < h since

h0
u =

∫ h

0
1 ·dτ = 1−κµ − µ

2
, (25)

where we used (24) and (18).

Given β > µ > 0 and κ > 0 we determined λcr for the uniform column corresponding to

a = 1 and h = 1. Having in mind that the prescribed volume i.e. the isoperimetric condition

was taken into account by prescribing the vertical force at the bottom (17), we pose the

following optimal control problem: given β > µ > 0, κ > 0 and λcr corresponding to the

critical load of the uniform column, find a(t) > 0 that will maximize the dimensionless

height of the column here denoted by h. By the analogy to the brachistochrone problem

or the simplest time optimal problem as declared in [2], we propose to choose the cross-

sectional area a(t), t ∈ [0,h] such that the height of the column will attain its maximal value,

that is

max
a∈U

h =

∫ h

0
1 ·dτ =

∫ h

0
(1+ ε)dt, (26)
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where we used (24), subject to

ḟ = a, α̇ =
m

a2
, ṁ = λcrα

(

f +(µ −β )
f 2

a

)

, (27)

and

f (0) =−κ −1, α (0) = 0, f (h) =−κ , m(h) = 0. (28)

In (27) it was assumed that a belongs to the set of admissible cross-sectional areas, defined

as

U ={a : a ∈C (0,h) , a ≥ 0} .

Note that (28)1, (28)3 correspond to the isoperimetric constraint. Also note that the free end

in the optimality criteria (26) is not specified so instead of ordinary (Lagrangian) variations

we shall use generalized variations that will be denoted by ∆.

Introducing the adjoint variables p f , pα and pm, the Pontryagin function (aka Hamilto-

nian) reads

H = 1+
f µ

a
+ p f a+ pα

m

a2
+

pmλcrα

(

f +(µ −β )
f 2

a

)

. (29)

Selecting a to be the control variable and applying the Pontryagin maximum principle in

its standard form, as in [26] or [2], we write the co-adjoint equations, say ṗϕ = −∂H/∂ϕ
for ϕ = f ,α ,m, the transversality conditions for generalized variations, and the optimality

condition ∂H/∂a = 0 respectively as follows

ṗ f =−µ

a
− pmλcrα

(

1+2(µ −β )
f

a

)

,

ṗα =−pmλcr

(

f +(µ −β )
f 2

a

)

, ṗm =− pα

a2
, (30)

[−p f ∆ f − pα∆α − pm∆m+H∆h]
∣

∣

h

0
= 0, (31)

− f µ

a2
+ p f −2pα

m

a3
−λcr (µ −β ) pmα

f 2

a2
= 0. (32)

The necessary condition ensuring the maximum of H reads

∂ 2H

∂a2
= 2

f µ

a3
+6pα

m

a4
+2λcr (µ −β ) pmα

f 2

a3
< 0. (33)
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Taking into account prescribed boundary conditions (28) with ∆h 6= 0 from (31) we get the

following transversality conditions

pα (h) = 0, pm (0) = 0, H (h) = 0. (34)

Since f is specified at both ends, due to the imposed isoperimetric condition, the corre-

sponding adjoint variable p f is not specified at the boundaries of the interval [0,h] . A re-

examination of (27)2,3 and (30)2,3 as well as the corresponding boundary conditions (28)3,4

and (34)1,2 leads to possible connections between the state variables α and m and the costate

variables pα and pm. Thus, in order to fulfill (33) we pick

pα =−m, pm = α , (35)

so the adjoint variables pα and pm can be omitted from the further analysis. Besides the

condition (33) now becomes

∂ 2H

∂a2
= 2

f µ

a3
−6

m2

a4
+2λcr (µ −β )α2 f 2

a3
< 0,

and is satisfied since f < 0, µ − β < 0, and a > 0. Therefore the necessary condition

for max
a∈U

H , and in turn, according to the Pontryagin maximum principle, max
a∈U

h, that is

∂ 2H/∂a2 < 0 is satisfied. We note that the sufficient condition for max
a∈U

H is more compli-

cated, see [31], [12], and will not be analyzed here.

With (35) the Pontryagin function (29) and the corresponding optimality condition (32)

become

H = 1+
f µ

a
+ p f a−

m2

a2
+λcrα

2

(

f +(µ −β )
f 2

a

)

,

∂H

∂a
=− f µ

a2
+ p f +2

m2

a3
−λcr (µ −β )α2 f 2

a2
= 0. (36)

Next we take the advantage of the optimization formulation (26) as follows. As in

[4], we note that the Pontryagin function H does not depend on the independent variable

explicitly, here the dimensionless arc length t, i.e.,

∂H

∂ t
= 0,

so it represents the first integral H = const. that is equal to zero, due to the transversality

condition corresponding to the free end of the optimization problem (34)3. Therefore, H =
0, on [0,h] , so

1+
f µ

a
+ p f a−

m2

a2
+λcrα

2

(

f +(µ −β )
f 2

a

)

= 0.
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Finally, the adjoint variable p f can also be eliminated from further analysis by use of two

first integrals ∂H/∂a = 0 and H = 0 given by (36) and (37) respectively. This is the main

advantage of this novel formulation. Namely, multiplying (36) by −a and adding the result

to (37) after some algebra will reduce the optimality condition to the following quadratic

equation

a2 − 2
(

λcr (β −µ) f 2α2 − f µ
)

1+λcr f α2
a− 3m2

1+λcr f α2
= 0.

We make two remarks here. Firstly, all adjoint variables are eliminated from the optimal

control problem. Namely, the connections (26) are obvious, while the first integrals H = 0

and ∂H/∂a = 0 that follow form the chosen optimality criteria with free end point (26) and

the isoperimetric condition given in terms of vertical load (28)1, (28)3 lead to the elimination

of the third one. Second, the quadratic equation determining the optimal cross section of

the tallest column (37) is very tractable since both free term and the coefficient of the linear

term are negative ( f < 0) so its solution is easy to find.

The optimal cross-section â = â(t) on [0,h] reads

â =
λcr (β −µ) f 2α2 − f µ

1+λcr f α2
+

√

[

(λcr (β −µ) f 2α2 − f µ)

1+λcr f α2

]2

+
3m2

1+λcr f α2
. (37)

Substituting the boundary conditions (28)2,4 into (37) respectively yields the values of the

optimal cross-section at the boundaries t = 0 and t = h, i.e.,

(1+κ)µ +

√

[(1+κ)µ ]2 +3m(0)2 ≥ â(t)≥

2
λcr (β −µ)(κ)2 α2 +κµ

1+λcrκα2
> 0.

Thus for κ > 0 the non-vanishing cross-section is ensured. In order to find the maximal

height of the column we have to scale two-point boundary value problem (27), (28), with

(37). Namely, formally adding ḣ = 0 to (27), introducing the new independent variable

ζ = t/h, ζ ∈ [0,1] and denoting the derivatives with respect to ζ again by dot, the maximal

height of the column h is determined by the solution of the following two-point boundary

value problem

ḟ = hâ, α̇ =
hm

â2
,

ṁ = hλcrα

(

f +(µ −β )
f 2

â

)

, ḣ = 0, (38)
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subject to

f (0) =−κ −1, α (0) = 0, f (1) =−κ , m(1) = 0. (39)

In order to solve two-point boundary value problem (38), (39) the classical shooting

technique is applied. We stress that the solution to (38),(39) determines the height of the

tallest column h. The shape of the tallest column atallest (t) , t ∈ [0,h] is determined form

the solution of (27),(28) and a = â given by (37). In case of µ > 0 the height of the opti-

mal/tallest column on the trivial solution reads

h0 =

∫ h

0

(

1+
f (t)µ

atallest (t)

)

dt. (40)

5 The regularization of the classical case

In order to obtain the Keller-Niordson solution that is htallest = 2.034 for λcr = 7.833 and

κ → 0, β = µ = 0 we start with (26) that is reduced to

max
a∈U

h =

∫ h

0
1 ·dt,

and (27) that are simplified to

ḟ = a, α̇ =
m

a2
, ṁ = λcrα f , (41)

subject to (28). The equations corresponding to (37), (36)2, (30)1 respectively read

1+ pa− m2

a2
+λcr f α2 = 0,

p+2
m2

a3
= 0, ṗ =−λcrα

2, (42)

where we used (35)2 and where we put p ≡ p f . The optimality condition corresponding to

(37) for β = µ = 0 reads

a =

√
3m

√

1+λcr f α2
. (43)

Note that the boundary condition (28)4 causes the singularity of (41), since a(h)= 0 and

the presence of the trivial solution α = m = 0 lead to wayward numerics. Thus, in order

to make the problem more tractable, motivated by the arguments related to the classical

problem presented in [4], we shall use the first integrals of the above system as follows.

Multiplying (41)2 by m and adding the result to (41)3 multiplied by α one gets

(mα)· = 4
m2

a2
−1, (44)
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where we used (42). Integrating (44) yields

∫ h

0

m2 (ξ )

a2 (ξ )
dξ =

h

4
. (45)

Similarly, multiplying (41)1 by p and adding the result to (42)3 previously multiplied by f

lead to

(p f )· = 1−5
m2

a2
, (46)

where as before we used Hamiltonian (42)1 and the necessary condition for optimality

(42)2. By integration of (46) on [0,h] one gets

−p(h)κ + p(0) (1+κ) =−h

4
, (47)

where we used (28)1,3 and (45). Assuming the finite value of p(h), in the limiting case

κ → 0 from (47) it holds

p(0) =−h

4
. (48)

Since a(0) =
√

3m(0) , see (43), substituting this and (48) in (42)2 one finds

m(0) =
8

3
√

3h
, a(0) =

8

3h
. (49)

On the other hand eliminating m2/a2 from (44) by use of (42)1,2 leads to

(mα)· =−2pa−1,

while multiplying (41)3 by m yields

(

m2
)·
= 2λcrmα f .

With this preparation and new variables ρ = mα and ω = m2 the problem turns to

ḟ = a, ρ̇ =−2pa−1, ω̇ = 2λcr f ρ ,

ṗ =
2+3pa

2 f
, ḣ = 0.

where we expressed λcrα
2 from (42)1, (42)3 and use (42)2 to get (50)4. The boundary

conditions correspond to (50) read

f (0) =−κ −1, ρ (0) = 0, f (h) =−κ ,

ω (h) = 0, p(h)κ − p(0) (1+κ) =
h

4
. (50)
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The system (50), (50) should be complemented by the optimality condition (42)2 that is

a = 3

√

−2ω

p
. (51)

Note that there is no singularity in (50) since −κ −1< f <−κ , (κ → 0) , since ω (h) =
0 and in turn a(h) = 0 causes no problem anymore. Besides, the infinite grow of α at t = h

does not influence the problem. The upper boundary of the parameter κ should be chosen

to keep the same value of the critical load λcr.
The last step is to avoid integration over the unspecified interval [0,h] and perform one

on [0,1] , so once again we use ζ = t/h, ζ ∈ [0,1] and keep dot to denote the derivative with

respect to ζ , so the two point boundary value problem that covers h of the classical solution

reads

ḟ = h 3

√

−2ω

p
, ρ̇ =−2h

3
√

−2ω p2 −h, ω̇ = 2λcrh f ρ ,

ṗ = h
2+3 3

√

−2ω p2

2 f
, ḣ = 0, (52)

f (0) =−κ −1, ρ (0) = 0, f (1) =−κ ,

ω (1) = 0, p(1)κ − p(0) (1+κ) =
h

4
. (53)

6 Results and discussion

In this section, in Table 1 and in Figures 2 and 3 we present numerical solutions of the

eigenvalue problem (19) and two point boundary value problems (38), (39) and (52), (53).

Then we comment on the obtained results.

In Table 1, in the fourth column, we present the eigenvalue λcr corresponding to (19)

obtained by Goodman’s method for several values of load and column parameters κ , β
and µ . In the fifth column the length of the uniform column h0

u in its trivial configuration

obtained by (25) is shown. In case of µ > 0 this value is less then 1. In the sixth column we

present the height of the tallest column h as the solution of (38), (39). The corresponding

height of the tallest column in its trivial configuration h0 obtained by (40) and the base cross-

section â(0) obtained from (37) for t = 0 are given in the 7th and 8th column respectively.

In doing so, in case of µ > 0 we solve (38), (39) to find h and then (27),(28) to find the

optimal shape from (37). Note that both uniform and the optimally shaped column i.e. the

tallest column, are of the same weight and will sustain the same critical load λcr without

buckling. However the latter is much higher. In case when β = µ = 0 we solve (52), (53)

for the corresponding λcr and κ and present the solutions in the first and the third row. A

tiny number within the following table ι stands for 1×10−8.
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TABLE1. Results for critical load and corresponding tallest column.

κ β µ λcr h0
u h h0 â(0)

ι 0 0 7.83735 1 2.0206 2.0206 1.315

ι 3ι ι 7.83735 1 2.0205 2.0205 1.311

0.1 0 0 6.00976 1 1.2810 1.2810 1.304

0 0.05 0 7.65587 1 2.0004 2.0004 1.310

0 0.1 0 7.48241 1 2.0176 2.0176 1.309

0 0.1 0.04 7.62056 0.98 2.0031 1.9792 1.321

0 0.03 0.01 7.76376 0.995 1.9983 1.9924 1.313

0.1 0.03 0.01 5.94643 0.994 1.2860 1.2784 1.306

0.005 0.03 0.01 7.64856 0.995 1.6304 1.6242 1.313

First we comment on the critical load λcr. For κ = 0 we cover all results presented in

Table 2 of [8] obtained by Newton’s method combined with corresponding series solution.

Regarding the influence of finite values of shear and extensional rigidity the well known

results of the generalized plane elastica theory were confirmed as expected. Namely, the

finite value of shear rigidity β > 0 decreases, while while the finite value of extensional

rigidity µ increases the critical load λcr. Having in mind that these effects are of the same

order, or strictly coupled due to he opposite influence on the critical load, we may speculate

that both effect should be taken into account in optimization problems. Finally, comparing

the first and the second row we recognize the homotopy between this problem and the

classical one as declared in the introduction since the solution of (38), (39) is very close to

the solution of (52), (53).

Next we comment the effects of optimization. A comparison between 5th and 7th col-

umn shows that the optimally shaped column in its upwards position is higher than the pris-

matic constant cross-section column of the same volume that will buckle for the same value

of λcr. For the parameter values presented in Table 1 the optimal columns are between 28.7

and about 100% higher with respect to the uniform column with the same volume/weight

and the critical load.

In case of a shearable rod (β > 0, µ = 0) from the results presented in the first, the

fourth and 5th rows of Table 1 we conclude that increasing β the maximal height of the

column h increases while the cross-section at the bottom end decreases. Namely, increasing

β the optimal column becomes more slender since h/â(0) decreases. The critical load λcr

decreases too so the shearable rod loaded with the same weight as the uniform column will

become taller as the result of the optimization procedure. Introducing both effects for µ > 0

and β > µ we conclude that the opposite is true.

In order to present the shape of the tallest column in an observable 3D space, let us recall

the Pearson formulation of the Lagrange problem: to find the curve which by its revolution

about an axis in its plane determines the column of greatest efficiency, see [16]. Note that

the efficiency here means the tallest column of circular cross-section with respect to the

uniform one of radii ru =
√

1/π = 0.56419. In Fig. 2 we present the classical solution
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h
0

u=1

ru=0.56419

h=2.0206

Tallest

Uniform

r( )0 =0.64597

k=b=m=0

l =7.83735cr

^
Fig. 2. The uniform and the tallest column in a sense of the Bernoulli-Euler theory

corresponding to the Bernoulli-Euler elastica theory and the first row of Table 1. Namely,

calculating r̂ =
√

â(t)/π we present the uniform column of circular cross-section of radii

ru and the optimally shaped (tallest) column of the same volume that will buckle with the

same critical load.

The tallest column corresponding to the last row of Table 1 is shown in Fig. 3. Note that

the uniform column that was initially of length 1 was shorten to 0.995 due to axial strain.

Next we comment on the results of some other investigations on the classical problem.

The solution of (52), (53) for λ KN
cr = 7.833, κ = 1×10−7 yields h= 2.0337984, what covers

the result of [27] where the height of the tallest column hKN = 2.034 was reported. Besides,

with h = 2.0337984 the eigenvalue of the optimally shaped column reads

λopt = λ KN
cr ×h4 = 134.02.

This value compares well with the results maximizing the critical load for given volume

obtained earlier: λopt = 134.19, in [27], λopt = 134.154, in [32], λopt = 134.1944, in [21]

and λopt = 134.1935 in [4]. Next we comment on the eigenvalue λcr presented in the above

table that differs from λ KN
cr = 7.833 used by Keller and Niordson. In case of β = µ = 0,
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h0

u=0.995

ru=0.56419

h=1.6304

Tallest

Uniform

r( )0 =0.64652

k=0.05
b=0.03
m=0.1

l =7.64856cr

^

r(h)=0.0287^

Fig. 3. The uniform and the tallest column in a sense of the generalized elastica theory

κ = 0,for our result of Table 1 we calculated λcr = 7.83734744 and round it to 7.83735.
Regarding that case it is known that λcr =

3
2

j2 where j is the smallest root of J− 1
3
( j) = 0,

as shown in [42]. Thus, Wang and Drachman reported λcr = 7.83735, that coincides with

the value obtained here. It should be noted that the difference ∆λ = λcr −λ KN
cr = 0.00435

corresponds to the dimensionless end load κ = 1.8498×10−4. Since κ decreases the height

of the tallest column, in the classical case h should be less then the one obtained by Keller

and Niordson here denoted by hKN . Regarding results recently presented in [4] where the

problem was considered on [0,1] we may add that the estimation of a(0) = 8/3 presented

therein agrees with (49)2 for h = 1. Also the estimation that

a(0)

m(0)
=

√
3

2
,

obtained in [4] is analogue to the one obtained here

a(0)

m(0)
=

√
3,

since the difference is due to different value of the constant representing Hamiltonian.

Next we give several remarks on the optimality condition (37) and present the advantage

of the optimization approach given by formulation (26). First we comment on the tallest
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column obtained in the sense of the classical Bernoulli-Euler elastica theory. Note that in

the approach to the problem presented, for example in [4], where the minimization of the

volume is used, the optimality condition leads to a two-point boundary value problem with

singularity at the top of the column where its cross-section vanishes. In [4] the singularity

problem was avoided by use of the new first integrals. Despite the existing singularity

[18] proved the existence and uniqueness of the solution of the problem (14), (15) with

β = µ = 0, κ = 0. The singularity and the behavior of the column near the top were

investigated in [21]. In [27] the singularity is treated by formulating an equivalent integral

equation. The list of references related to this issue how to deal with the singularity at the

top and do numerics in the presence of the trivial solution when µ = β = 0 can be enlarged

by many more [10], [16], [15], [19], to mention just a few. However, a strategy to resolve

the anomaly may be a different one, that is to introduce more physical parameters in the

model what was actually done here by choosing the column model that can suffer flexion,

shear and axial strain. Namely, for β > µ > 0 the same constitutive axiom as (6) was used

in [40] where the optimality condition as a solution of the depressed cubic was obtained.

The optimal cross section therein was obtained by use of the Chebyshev root function.

Also, it was shown that imposing shear in the column model will eliminate points where

the cross-section of the column vanish. The regularization of the column cross-section

and in turn, avoidance of the singularities in the differential equations in optimal control

problems by imposing finite values of extensional and shear rigidity was presented in [38].

The nonlinear corresponding optimality condition therein was solved numerically by the

bisection method. Finally, the optimality condition such as (37) can be differentiated and

coupled with (38), (39) and (28)1 provided an initial condition a(0) is known in advance.

This was the case in [22], however it does not work here because the initial condition a(0)
can not be easily determined.

Regarding the physical homotopy declared in the introduction, it was shown that de-

creasing κ , β > µ and calculating the corresponding λcr we get closer to the classical

solution. Namely, for κ = 1× 10−8and µ = β/3 = 1× 10−8 we get the maximal height

h = 2.0205 what agrees well with h = 2.0206 obtained for the classical case and the same

value λcr = 7.83735. We conclude that in some sense the regular system (38), (39) and the

classical system obtained within the framework of the Bernoulli-Euler elastica theory for

κ = β = µ = 0 are homotopic since three physical parameters κ ,β and µ can transform

one system to another, as can be seen by comparison of the results presented in the first and

the second row of Table 1. It can be confirmed for the results presented in the third row too.

Finally, we comment on the dimensionality of the optimal control problem. The formu-

lation in which both the critical load and the weight of the column are fixed while its height

remains unspecified leads to the additional first integral H = 0 and in turn to elimination

of all adjoint variables. This simplifies the shooting procedure as the standard technique of

solving structural optimization problems.
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7 Closure

In this paper we proposed the new pattern of determining the shape of the vertical column

that will increase its height with respect to the uniform one that is of the same weight

and will sustain the same critical load λcr without buckling. The new pattern comprises

the optimal control problem with a free end point and the constitutive equations of the

column that take flexure, compression and shear into account. Namely, in order to maximize

the height for the fixed critical load and the weight of the column, we used the concept

of generalized variations within the framework of the Pontryagin maximum principle for

problems with the isoperimetric constraint. As in [27] we introduced the compressing force

at the free end of the column and allow this force to vanish. Our main results are:

1. With (14), (15), we described the linearized equilibrium equations of the heavy verti-

cal column with the end load in the presence of the shear and axial strain on unspeci-

fied domain. With (17) we incorporated the isoperimetric constraint into the problem.

The parameters κ , β and µ therein correspond to the dimensionless end load, shear

and extensional rigidity respectively. These equations correspond to Haringx’s type

of the internal force decomposition.

2. The eigenvalue problem corresponding to (14), (15), for the column of the constant

cross-section and the unit length was given by (19) and solved numerically by use

of Goodman’s method. The critical load λcr for several values of load and column

parameters κ , β and µ are given in the first four columns of Table 1, where the

influence of the end load as well as the finite values of shear and extensional rigidity

on the critical load was shown. Increasing κ and β decreases the critical load λcr

while increasing µ increases the critical load as expected.

3. The new form of the optimality criteria was stated in (26). The application of the

Pontryagin maximum principle for the corresponding Hamilton function introduced

in (29) led to necessary conditions of optimality (30) - (33). The simple observations

of the state and costate equations (27)2,3 and (30)2,3, together with the optimality

condition (36) and the first integral (37) that follows from the unspecified terminal arc

coordinate and form of the Hamiltonian, led to the elimination of all costate variables.

The corresponding optimal cross-section of the tallest column was given in (37) as a

solution of the quadratic equation (37).

4. It was shown that the cross-section of the column does not vanish for positive values

of κ , β and µ . In the case when these constants tend to zero the problem and its

solution cover the classical tallest column posed in the framework of the classical

Bernoull-Euler elastica theory. Yet another regularization of this classical problem

was given by (52), (53). The result of [27] was covered. We showed that the classical

solution and the solution obtained in sense of the generalized plane elastica theory

are homotopic in a physical sense. Namely, decreasing the compressive load acting
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at the top of the column and parameters describing shear and extensional rigidity the

solutions of the two-point boundary value problems (38), (39) and (52), (53) coincide.

5. For several values of the load and column parameters, the numerical solutions of the

boundary value problem corresponding to the optimal control problem posed here

(38), (39), were presented in the columns 5 to 8 of Table 1. Both maximal h > 1 and

in case of µ > 0 the height in the corresponding trivial configuration of the tallest h0

with respect to the uniform column h0
u < 1 are significantly higher.

6. The solutions of the classical problem and the generalized problem in the observable

3D space for the column of circular cross-section were shown in figures 2 and 3

respectively.

7. The obtained numerical results quantitatively show how the finite values of shear and

extensional rigidity influence the optimal shape of a heavy compressed column with

and without the compressive force at the free end. It was shown that finite value of

the shear rigidity increases the height of the tallest column and decreases its cross-

section at the bottom making the tallest column more slender, while the finite value

of the extensional rigidity decreases its height and increases its cross-section at the

bottom making the tallest column more stocky.

The pattern presented here may be applied to solve some practical problems in high

building design, for example the one related to the useful inner space. Namely, any flat plate

of given weight, say n ·κ , n ∈ N, can be supported by n columns like the ones presented in

Fig. 3. However using the tallest (optimally shaped) instead of the uniform columns yields

67% more of the useful inner space. Knowing that the end load of each column κ decreases

along the line from bottom to top of the building, one can predict net gain of the useful

inner space while keeping the same cost of the material since both columns are of the same

weight. Besides, the critical load is the same too, so the physical and in turn engineering

parameters involved in that load will be the same too. Therefore the next step to be done

is to examine if this pattern can be related more to demands and attention of practicing

engineers as well as designers of high building structures. Several very useful questions on

this issue can be found in [13] and [1].
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