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Remarks on the Modified Second Zagreb Index on a Line Graph
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Dedicated to the memory of Professor Ćemal Dolićanin (1945–2023)

Abstract: Let G = (V,E), V = {v1,v2, . . . ,vn}, be a simple graph of order n and size m. De-

note by ∆ = d1 ≥ d2 ≥ ·· · ≥ dn = δ , di = d(vi), and ∆e = d(e1) ≥ d(e2) ≥ ·· · ≥ d(em) = δe,

sequences of vertex and edge degrees, respectively. If vertices vi and v j are adjacent in G, we

write i ∼ j. The modified second Zagreb index is defined as M∗
2 (G) = ∑i∼ j

1
did j

. In this paper

we determine some new upper and lower bounds on M∗
2(G) for a line graph L(G) of G.

Keywords: graphs, topological indices, degree-based invariants.

1 Introduction

Let G = (V,E), V = {v1,v2, . . . ,vn}, be a simple graph with n vertices, m edges with vertex–

degree sequence ∆ = d1 ≥ d2 ≥ ·· · ≥ dn = δ > 0, di = d(vi), and edge degree sequence ∆e =
d(e1) ≥ d(e2) ≥ ·· · ≥ d(em) = δe. If vertices vi and v j are adjacent in G, we write i ∼ j.

Likewise, if edges ei and e j are adjacent in G, we write ei ∼ e j.

In graph theory, a graph invariant is property of the graph that is preserved by isomor-

phisms. The graph invariants that assume only numerical values are usually referred to as

topological indices in chemical graph theory. Hundreds of various topological indices have

been introduced in mathematical chemistry literature in order to describe physical and chemi-

cal properties of molecules. Various mathematical properties of topological indices have been

investigated, as well. As topological indices have been defined for quantifying information

of graphs, this area could be classified into the so called quantitative graph theory (see, for

example [6, 13–15]).
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Many of topological indices are defined as simple functions of the degree sequence of

(molecular) graph. In what follows we recall definitions of indices that are of interest for the

present work.

The first Zagreb index, M1(G), is defined as the sum of the squares of the degrees of the

vertices [8]

M1(G) =
n

∑
i=1

d2
i = ∑

i∼ j

(di + d j) ,

and the second Zagreb index as the sum of the product of the degrees of adjacent vertices [7]

M2(G) = ∑
i∼ j

did j .

The modified second Zagreb index M∗
2 (G) is a vertex-degree-based graph invariant intro-

duced in [11]. It is defined by

M∗
2 (G) = ∑

i∼ j

1

did j

.

Note that this topological index is also ment under the names variable second Zagreb index [9],

and general Randić index R−1 [2, 12].

The line graph L(G) of a graph G, L(G) = (VL,EL), VL = E = {e1,e2, . . . ,em}, is the graph

with vertex set E where two vertices ei and e j in L(G) are adjacent, denoted as ei ∼ e j, if and

only if edges ei and e j are adjacent in G. If the end vertices of an edge ek ∈ E , (ek ∈VL), are vi

and v j, then the degree of ek is defined to be d(ek) = di + d j − 2. The number of vertices in a

line graph L(G) is equal to the number of edges in G, i.e. nL = m, and number of edges (see,

for example, [5]) is

mL =
1

2
∑
i∼ j

(di + d j − 2).

The Zagreb indices of L(G), that is the reformulated Zagreb indices of G, are defined as

EM1(G) = M1(L(G)) =
m

∑
i=1

d(ei)
2 = ∑

ei∼e j

(d(ei)+ d(e j)) ,

EM2(G) = M2(L(G)) = ∑
ei∼e j

d(ei)d(e j) ,

EM∗
2(G) = M∗

2(L(G)) = ∑
ei∼e j

1

d(ei)d(e j)
.

In this paper we determine the bounds of M∗
2 (G) on a line graph L(G).

2 Main result

In the next theorem we determine a lower bound on EM∗
2(G) when the size and minimum or

maximum degree of the considered line graph are known.

Theorem 2.1. Let G be a connected graph with m ≥ 2 edges. Then we have

EM∗
2(G)≥

mδe −mL

δ 2
e

, (2.1)
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and

EM∗
2(G)≥

m∆e −mL

∆2
e

. (2.2)

Equality in (2.1) holds if and only if in every pair of adjacent edges ei and e j in G, at least one has

degree δe. Equality in (2.2) holds if and only if in every adjacent pairs of edges ei and e j in G, at

least one has degree ∆e.

Proof. For every i and j, with 1 ≤ i ≤ m and 1 ≤ j ≤ m, it holds that

(d(ei)− δe)(d(e j)− δe)≥ 0 and (∆e − d(ei))(∆e − d(e j))≥ 0 ,

that is

d(ei)d(e j)+ δ 2
e ≥ δe(d(ei)+ d(e j)) and d(ei)d(e j)+∆2

e ≥ ∆e(d(ei)+ d(e j)) . (2.3)

After dividing the above inequalities by d(ei)d(e j), we obtain

1+
δ 2

e

d(ei)d(e j)
≥ δe

(

1

d(ei)
+

1

d(e j)

)

and

1+
∆2

e

d(ei)d(e j)
≥ ∆e

(

1

d(ei)
+

1

d(e j)

)

.

(2.4)

Now, after summing (2.4) over all pairs of adjacent edges ei and e j in G, we obtain

∑
ei∼e j

1+ δ 2
e ∑

ei∼e j

1

d(ei)d(e j)
≥ δe ∑

ei∼e j

(

1

d(ei)
+

1

d(e j)

)

= δe

m

∑
i=1

1 ,

and

∑
ei∼e j

1+∆2
e ∑

ei∼e j

1

d(ei)d(e j)
≥ ∆e ∑

ei∼e j

(

1

d(ei)
+

1

d(e j)

)

= ∆e

m

∑
i=1

1 ,

that is

mL + δ 2
e EM∗

2(G)≥ mδe and mL +∆2
eEM∗

2(G)≥ m∆e , (2.5)

from which we arrive at (2.1) and (2.2).

Equality in the first inequality in (2.5), and therefore in (2.1), holds if and only if in every pair of

adjacent edges ei and e j in G, at least one is of degree δe. Likewise, equality in the second inequality

in (2.5), and consequently in (2.2), holds if and only if in every pair of adjacent edges ei and e j in

G, at least one is of degree ∆e.

Before providing some corollaries of Theorem 2.1, we prove two auxiliary results.

Lemma 2.1. Let G be a connected graph with m ≥ 3 edges such that L(G) is non–regular, that is

∆e 6= δe. If for every pair of adjacent edges ei and e j of G holds that d(ei) = ∆e and d(e j) = δe, or

vice versa, then G ∼= P4.

Proof. Contrarily, assume that there exists an edge ei of G such that d(ei) = ∆e ≥ 3. Then, there

are at least two edges e j and ek of G that are adjacent to ei and also they are mutually adjacent,

that is e j ∼ ek. This is a contradiction to the assumption of lemma that no two adjacent edges have

the same degree. This means that the assumption d(ei) = ∆e ≥ 3 was wrong and thus we must

have d(ei) = ∆e ≤ 2. This implies that if two edges ei and e j are adjacent in G, then d(ei) = 2 and

d(e j) = 1. Since G is connected, this is valid if and only if m = 3, that is G ∼= P4.
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Lemma 2.2. Let G be a connected graph with m ≥ 2 edges. Then

mδe ≤ 2mL ≤ m∆e . (2.6)

Equality holds if and only if L(G) is a regular graph.

Proof. Since

2mL = M1(G)− 2m = ∑
i∼ j

(di + d j − 2) =
m

∑
i=1

d(ei) ,

the required result immediately follows.

By using Lemmas 2.1 and 2.2 it is easy to prove the following corollaries of Theorem 2.1.

Corollary 2.1. Let G be a connected graph with m ≥ 2 edges. Then, we have

EM∗
2(G)≥

m(∆e + δe)− 2mL

∆2
e + δ 2

e

.

Equality holds if and only if either L(G) is regular or L(G)∼= P3.

Corollary 2.2. Let G be a connected graph with m ≥ 2 edges. Then, we have

EM∗
2(G)≥

m

2∆e

.

Equality holds if and only if L(G) is regular.

Remark 2.1. In [1] it was proven that

M∗
2(G)≥ max

{

nδ −m

δ 2
,

n∆−m

∆2

}

.

The inequalities (2.1) and (2.2) are counterparts of the above inequality on a line graph L(G).

Theorem 2.2. Let G be a connected graph with m ≥ 2 edges. Then, we have

EM2(G)+mLδ 2
e ≥ δeEM1(G) and EM2(G)+mL∆2

e ≥ ∆eEM1(G) . (2.7)

Equality in the first inequality in (2.7) holds if and only if in every pair of adjacent edges ei and e j

in G at least one has degree δe. Likewise, equality in the second inequality in (2.7) holds if and only

if in every pair of adjacent edges ei and e j in G at least one has degree ∆e.

Proof. The required result is obtained after summation of (2.3) over all pairs of adjacent edges ei

and e j in G.

Remark 2.2. In [4] the following inequalities were proven:

M2(G)+mδ 2 ≥ δM1(G) and M2(G)+m∆2 ≥ ∆M1(G) .

The inequalities (2.7) are counterparts of the above inequalities on a line graph L(G).

In the next theorem we determine an upper bound on EM∗
2(G) when the size and minimum

and maximum degrees of the considered line graph are known.
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Theorem 2.3. Let G be a connected graph with m ≥ 2 edges. Then, we have

EM∗
2(G)≤

m(∆e + δe)− 2mL

2∆eδe
. (2.8)

Equality holds if and only if L(G) is regular.

Proof. For every i and j, with 1 ≤ i ≤ m and 1 ≤ j ≤ m, it holds that

(d(ei)− δe)(∆e − d(e j))≥ 0 and (∆e − d(ei))(d(e j)− δe)≥ 0 ,

that is

d(ei)d(e j)+∆eδe ≤ ∆ed(ei)+ δed(e j) ,

d(ei)d(e j)+∆eδe ≤ δed(ei)+∆ed(e j) .
(2.9)

After summing the both inequalities of (2.9) we obtain

2d(ei)d(e j)+ 2∆eδe ≤ (∆e + δe)(d(ei)+ d(e j)) .

Now, after dividing the above inequality by d(ei)d(e j) and summing over all pairs of adjacent edges

ei and e j of G, we obtain

2mL + 2∆eδeEM∗
2 (G)≤ m(∆e + δe) ,

from which (2.8) immediately follows.

Suppose that ei and e j are two arbitrary adjacent edges in G. Equality in the first inequality in

(2.9) holds if and only if d(ei) = δe or d(e j) = ∆e. Equality in the second inequality in (2.9) holds

if and only if d(ei) = ∆e or d(e j) = δe. Simultaneously, in both cases, equality holds if and only if

d(ei) = d(e j) = ∆e = δe, that is if and only if L(G) is a regular graph. The equality in (2.8) holds

under the same conditions.

Corollary 2.3. Let G be a connected graph with m ≥ 2 edges. Then, we have

EM∗
2(G)≤

m

2δe

.

Equality holds if and only if L(G) is a regular graph.

References
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[7] I. GUTMAN, B. RUŠČIĆ, N. TRINAJSTIĆ, C. F. WILCOX, Graph Theory and Molecular

Orbitals. XII. Acyclic Polyenes, J. Chem. Phys. 62 (1975), 3399–3405.
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