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1 Introduction

Recently, the selection and star selection principles in topology have been studied by

many authors ([5, 6, 14, 15, 24]). They considered several selection (star selection) prop-

erties and studied the relations between a space X satisfying such a property and its hyper-

spaces with the Vietoris and other topologies.

In [8, 9] V. V. Fedorchuk and V. V. Filippov investigated the functor of G-permutation

degree and it was proved that the functor of G-permutation degree SPn

G
is a normal functor

in the category of compact spaces and their continuous mappings.

In recent years researches were interested in the theory of cardinal invariants, homotopy

properties, some classes of topological spaces and their behavior under the influence of

various covariant functors, in particular under influence of the functor of G-permutation

degree (see [4, 16, 17, 18, 19, 20, 21]).

In [4, 16], it was studied index of boundedness, uniform connectedness and homotopy

properties of the space of G-permutation degree. In [16], it was shown that the functor
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SPn

G
preserves the homotopy and the retraction of topological spaces. In addition, it was

proved that if the spaces X and Y are homotopically equivalent, then the spaces SPn

G
X and

SPn

G
Y are also homotopically equivalent., i.e. that the functor SPn

G
is a covariant homotopy

functor.

In [17, 18, 19], some tightness-type properties, network-type properties and Lindelǒf-

type properties of the space of G-permutation degree have been studied. For example, in

[19] it was proved that the functor SPn

G
preserves cs-network, cs∗-network, cn-network and

ck-network of topological spaces. The papers [20, 21] are devoted to the investigation of

some classes of topological spaces (such as developable spaces, Moore spaces, M1-spaces,

M2-spaces, Lašnev spaces and Nagata spaces) in the space of G-permutation degree.

In this paper, we study the relation between a space X (and its power XnP) satisfying

certain selection (or star selection) properties and the space of G-permutation degree SPn

G
X .

We prove:

(1) If Xn is an almost Menger space, then so is SPn

G
X ;

(2) If Xn is a star-Menger space, then so is SPn

G
X ;

(3) X is an ω-Rothberger space (an Alster space) if and only if SPn

G
X is ω-Rothberger

(Alster);

(4) If Xn is set star-Menger (set strongly star Menger) space, then so is SPn

G
X ;

(6) A space Xn is weakly strongly star-Menger if and only if the space SPn

G
X is weakly

strongly star-Menger.

Throughout this paper all spaces are assumed to be T2.

2 Preliminary notes

The set of all non-empty closed subsets of a topological space X is denoted by expX . The

family of all sets of the form

O〈U1,U2, . . . ,Un〉=
{

F : F ∈ expX , F ⊂
n
∪

i=1
Ui, F ∩Ui 6= /0, i = 1, . . . ,n

}

,

where U1,U2, . . . ,Un are open subsets of X , generates a base of the topology on the set

expX . This topology is called the Vietoris topology. The set expX with the Vietoris topol-

ogy is called the exponential space or the hyperspace of the space X . We put

expnX = {F ∈ expX : |F| ≤ n} [9].

Let Sn be the group of all permutations of the set X = {1,2, . . . ,n} and let G be a

subgroup of Sn. Let Xn be the n-th power of a topological space X . The permutation group

G acts on Xn as permutation of coordinates: two points (x1,x2, . . . ,xn),(y1,y2, . . . ,yn) ∈ Xn

are considered to be G-equivalent if there exists a permutation σ ∈ G such that yi = xσ(i).

The set of all orbits of this action with the quotient topology is denoted by SPn

G
X . The

quotient mapping, denoted by πs
n,G : Xn→ SPn

G
X , is defined by

π
s
n,G((x1,x2, . . . ,xn)) = [(x1,x2, . . . ,xn)]G,
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for every (x1,x2, . . . ,xn) ∈ Xn

Thus, the points of the space SPn

G
X are finite subsets (equivalence classes) of the prod-

uct Xn. The space SPn

G
X is called the space of n-G-permutation degree (or simply the space

of G-permutation degree) of the space X When G = Sn we omit G in the previous notations.

Let f : X → Y be a continuous mapping. One defines the mapping SPn

G
f : SPn

G
X →

SPn

G
Y : for an equivalence class [(x1,x2, . . . ,xn)]G ∈ SPn

G
X we put

SPn

G f [(x1,x2, . . . ,xn)]G = [( f (x1), f (x2), . . . , f (xn))]G.

In this way one obtains a normal functor SPn

G
in the category of compact spaces and their

continuous mappings. This functor is called the functor of G-permutation degree.

Equivalence relations by which we obtained spaces SPn

G
X and expnX are called the

symmetric and hypersymmetric equivalence relations, respectively. Symmetrically equiva-

lent points in Xn are hypersymmetrically equivalent, but the inverse is not true, in general.

The G-symmetric equivalence class [(x1,x2, . . . ,xn)]G uniquely determines the hyper-

symmetric equivalence class [(x1,x2, . . . ,xn)]
hc containing it. The mapping

π
h
n,G : SPn

GX → expnX ,

represents the functor expn as the factor functor of the functor SPn

G
[8, 9]. Note that the

spaces exp2X and SP2

G
X are homeomorphic; there are examples showing that for n≥ 3 the

spaces expnX and SPn

G
X need not be homeomorphic [8, 9].

3 Results

3.1 Selection principles

This subsection is devoted to certain selective properties of the space of G-permutation

degree.

In general Menger-type properties are not preserved under the functor SPn

G
, in particular

the nth power of a Menger-type space need not be of the same type.

A space X is almost Menger [13, 22] if for every sequence {Um}m∈N of open covers of

X there is a sequence {Vm}m∈N such that Vm is a finite subset of Um for every m ∈ N and
⋃

m∈N

⋃

{V : V ∈ Vm}= X .

Theorem 3.1 If Xn is an almost Menger space, then so is SPn

G
X.

Proof. Let Xn be an almost Menger space and {SPn

G
Um}m∈N be a sequence of open cov-

ers of SPn

G
X . Put Um = {(πs

n,G)
←(SPn

G
U) : SPn

G
U ∈ SPn

G
Um} for every m ∈ N. Since

πs
n,G(X

n) = SPn

G
X and the mapping πs

n,G is continuous, {Um}m∈N is a sequence of open

covers of Xn. Since Xn is an almost Menger space, there is a sequence {Vm}m∈N of finite

sets such that Vm is a subset of Um for every m ∈ N and
⋃

m∈N

⋃

{V : V ∈ Vm} = Xn. Put
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SPn

G
Vm = {SPn

G
V : πs

n,G(V ) = SPn

G
V,V ∈ Vm} for every m ∈N. We have that {SPn

G
Vm}m∈N

is a sequence of finite subsets of SPn

G
Um for every m ∈ N. On the other hand, we have

SPn

GX = π
s
n,G(X

n) = π
s
n,G

(

⋃

m∈N

⋃
{

V : V ∈ Vm

}

)

=
⋃

m∈N

⋃
{

π
s
n,G(V ) : V ∈ Vm

}

⊂
⋃

m∈N

⋃

{

πs
n,G(V ) : V ∈ Vm

}

.

Finally, we have that
⋃

m∈N

⋃

{πs
n,G(V ) : V ∈ Vm} = SPn

G
X , and it means that the space

SPn

G
X is almost Menger. Theorem 3.1 is proved. �

A space X is weakly set-Menger (resp., almost set-Menger), if for every nonempty

subset A of X and every sequence {Um}m∈N of open sets in X such that for every m ∈ N,

A⊂∪Um, there exists a sequence {Vm}m∈N such that for every m ∈N, Vm is a finite subset

of Um and A⊂
⋃

m∈N

⋃

Vm (resp., A⊂
⋃

m∈N

⋃

Vm).

Similarly to the proof of Theorem 3.1 we can prove the following result.

Theorem 3.2 If Xn is a weakly set-Menger space (resp., an almost set-Menger space), then

so is SPn

G
X.

Recall that an open cover U of a space X is said to be an ω-cover if every finite subset

of X is contained in a member of U . A space X is said to be ω-Rothberger if for every

sequence {Um}m∈N of ω-covers of X there is a sequence {Um}m∈N such that for every

m ∈ N, Um ∈Um and {Um : m ∈ N} is an ω-cover of X .

Theorem 3.3 For a space X, the space SPn

G
X is ω-Rothbrger if and only if X is ω-Rothberger.

Proof. (⇒) Let SPn

G
X be an ω-Rothberger space. We first prove that the space Xn is ω-

Rothberger. Let {Um}m∈N be a sequence of ω-covers of Xn. We prove that πs
n,G(Um) is

an ω-cover of SPn

G
X for every m ∈ N. First, the mapping πs

n,G : Xn → SPn

G
X is open so

that πs
n,G(Um) is an open cover of SPn

G
X . Let F be a finite subset of SPn

G
X . As πs

n,G is a

finite-to-one mapping, the set (πs
n,G)

←(F) is a finite subset of Xn. Therefore, there exists

U ∈Um such that (πs
n,G)

←(F) is contained in U . It follows that F ⊂ πs
n,G(U) ∈ πs

n,G(Um).
In other words, {πs

n,G(Um)}m∈N is a sequence of ω-covers of SPn

G
X . Thus one can choose

a πs
n,G(Um) ∈ πs

n,G(Um), m ∈ N, such that {πs
n,G(Um) : m ∈ N} is an ω-cover of SPn

G
X .

This means that the sequence {Um}m∈N witnesses for {Um}m∈N that Xn is an ω-Rothberger

space. It follows from this that X is ω-Rothberger as the image of Xn under the projection

mapping.

(⇐) Let X be an ω-Rorhberger space. It was shown in [10] that all finite powers of an ω-

Rothberger space are also ω-Rothberger, hence Xn is ω-Rothbrger. We prove that SPn

G
X is
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an ω-Rothberger space. Let {Um}m∈N be a sequence of ω-covers of SPn

G
X . Since the map-

ping πs
n,G is finite-to-one, one can easily conclude that {(πs

n,G)
←(Um)}m∈N is a sequence of

ω-covers of Xn. Since Xn is ω-Rothberger, there is a sequence {(πs
n,G)

←(Um)}m∈N such that

for every m ∈ N, (πs
n,G)

←(Um) ∈ (πs
n,G)

←(Um) and {(πs
n,G)

←(Um) : m ∈ N} is an ω-cover

of Xn. Then the sequence {Um}m∈N shows that SPn

G
X is an ω-Rothbrger space. �

A space X is said to be ω-Menger if for every sequence {Um}m∈N of ω-covers of X

there is a sequence {Vm}m∈N such that for every m ∈ N, Vm is finite subset of Um and
⋃

m∈NVn is an ω-cover of X .

Similarly to the proof of the previous theorem, by using the fact that all finite powers of

an ω-Menger space are ω-Menger [10], one can prove the following.

Theorem 3.4 For a space X, the space SPn

G
X is ω-Menger if and only if X is ω-Menger.

The following notation we borrow from [1]. The symbol G denotes the collection of

all covers of a space X by Gδ subsets of X . The symbol GK denotes the collection of all

U ∈ G such that X 6∈ U and for every compact subset C of X there is U ∈ U containing

C; covers from GK are called Alster covers.

A space X is said to be an Alster space [1, 3] if for every sequence {Um}m∈N of elements

of GK there is a sequence {Um}m∈N such that Um ∈Um for every m ∈N and {Um : m ∈N} ∈
G .

Theorem 3.5 A space X is an Alster space if and only if SPn

G
X is so.

Proof. (⇒) Let X be an Alster space. By [2, Theorem 4.5] (see also [1, 3]) the space Xn is

also an Alster space. We are going now to prove that SPn

G
X is an Alster space. Let {Um}m∈N

be a sequence of Alster covers of SPn

G
X . Since the mapping πs

n,G is closed and finite-to-one,

hence perfect, it is easy to check that {(πs
n,G)

←(Um)}m∈N is a sequence of Alster covers of

Xn. Since Xn is an Alster space there is a sequence {(πs
n,G)

←(Um)}m∈N ∈ G such that for

every m ∈ N, (πs
n,G)

←(Um) ∈ (πs
n,G)

←(Um). Then the sequence {Um}m∈N witnesses for

{Um}m∈N that SPn

G
X is an Alster space.

(⇐) Let now SPn

G
X be an Alster space and let {Vm}m∈N be a sequence of Alster covers

of Xn. We prove that πs
n,G(Vm) is an Alster cover of SPn

G
X for every m ∈ N. Let C be a

compact subset of SPn

G
X . As πs

n,G is a perfect mapping, the set (πs
n,G)

←(C) is a compact

subset of Xn. Therefore, there is some V ∈ Vm such that (πs
n,G)

←(C) ⊂ V and thus C ⊂
πs

n,G(V ) ∈ πs
n,G(Vm). So, {πs

n,G(Vm)}m∈N is a sequence of Alster covers of SPn

G
X . We can

find for every m ∈ N an element πs
n,G(Vm) ∈ πs

n,G(Vm) such that {πs
n,G(Vm) : m ∈ N} ∈ G .

The sequence {Vm}m∈N guarantees for {Vm}m∈N that Xn is an Alster space.

Finally, we use the projection pr : Xn→ X to conclude that X is an Alster space. �
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3.2 Star selection principles

In this subsection we consider some star selection principles in the space of G-permutation

degree. If A is a subset of a space X and A is collection of subset of X , then St(A,A ) =
∪{B ∈A : B∩A 6= /0}.

A space X is called star-Menger [11], if for every sequence {Um}m∈N of open covers

of X there is a sequence {Vm}m∈N such that Vm is a finite subset of Um for every m ∈ N,

and {St(∪Vm,Um)}m∈N is a cover of X .

Theorem 3.6 If Xn is a star-Menger space, then so is SPn

G
X.

Proof. Assume that Xn is a star-Menger space. Let {SPn

G
Um}m∈N be a sequence of open

covers of SPn

G
X . Put Um = {(πs

n,G)
←(SPn

G
U) : SPn

G
U ∈ SPn

G
Um} for every m ∈ N. Since

πs
n,G(X

n) = SPn

G
X and the mapping πs

n,G is continuous, {Um}m∈N is a sequence of open

covers of Xn. Thus there is a sequence {Vm}m∈N of finite subsets of Um, m ∈ N, such that
⋃

m∈N St(
⋃

Vm,Um) = Xn. Let SPn

G
Vm = πs

n,G(Vm). Clearly, {SPn

G
Vm}m∈N is a sequence of

finite subsets of SPn

G
Um, m ∈N. It is easily checked that

{

St(
⋃

SPn

G
Vm,SP

n

G
Um) : m ∈ N

}

is a cover of SPn

G
X . It shows SPn

G
X is a star-Menger space. �

A space X is called almost star-Menger [22], if for every sequence {Um}m∈N of open

covers of X there is a sequence {Vm}m∈N such that Vm is a finite subset of Um for every

m ∈ N, and {St(∪Vm,Um) : m ∈ N} is a cover of X .

Theorem 3.7 If Xn is an almost star-Menger space, then so is SPn

G
X.

Proof. Let Xn be an almost star-Menger space and {SPn

G
Um}m∈N be a sequence of open

covers of SPn

G
X . Put Um = {(πs

n,G)
←(SPn

G
U) : SPn

G
U ∈ SPn

G
Um} for every m ∈ N. Since

πs
n,G(X

n) = SPn

G
X and the mapping πs

n,G is continuous, (Um)m∈N is a sequence of open

covers of Xn. Since Xn is an almost star-Menger space, there is a sequence {Vm}m∈N of

finite sets such that Vm is a subset of Um for every m ∈N and
⋃

m∈N St(∪Vm,Um) = Xn. Let

SPn

G
Vm = {SPn

G
U : (πs

n,G)
←(SPn

G
U) ∈ Vm}. If x = (x1, . . . ,xn) ∈ Xn, then it follows from

(πs
n,G)

←(
⋃

SPn

G
Vm) =

⋃

Vm that there is k ∈ N such that x ∈ St((πs
n,G)

←(
⋃

SPn

G
Vk),Uk). If

[x]G = πs
n,G(x) ∈ SPn

G
X , then

[x]G ∈ π
s
n,G

(

St
(

(πs
n,G)

←(
⋃

SPn

G
Vk),Uk

)

)

⊆ πs
n,G

(

St
(

(πs
n,G)

←(
⋃

SPn

G
Vk),Um

))

⊆ St
(

⋃

SPn

G
Vk,SP

n

G
Uk

)

.

On the other hand, suppose that (πs
n,G)

←(
⋃

SPn

G
Vm)∩ (π

s
n,G)

←(SPn

G
U) 6= /0. Then also

πs
n,G((π

s
n,G)

←(
⋃

SPn

G
Vm))∩πs

n,G((π
s
n,G)

←(SPn

G
U)) 6= /0, so

⋃

SPn

G
Vm∩SP

n

G
U 6= /0. It shows

that the space SPn

G
X is almost star-Menger. Theorem 3.7 is proved. �
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A space X is called strongly star-Menger [11, 12] if for every sequence {Um}m∈N

of open covers of X , there exists a sequence {Fm}m∈N of finite subsets of X such that
⋃

m∈N St(Fm,Um) = X .

By a small modification of the proof of Theorem 3.6 we can prove the following.

Theorem 3.8 If Xn is a strongly star-Menger space, then so is SPn

G
X.

A space X is called set star-Menger if for every nonempty subset A of X and every

sequence {Um}m∈N of collections of open sets in X such that A ⊂ ∪Um, m ∈ N, there

exists a sequence {Vm}m∈N such that Vm is a finite subset of Um for every m ∈ N and

A⊂
⋃

m∈N St(∪Vm,Um);

Theorem 3.9 If Xn is a set star-Menger space, then so is SPn

G
X.

Proof. Assume that Xn is a set star-Menger space. Let SPn

G
A be any nonempty subset of

SPn

G
X and {SPn

G
Vm}m∈N be a sequence of open covers of SPn

G
A. Put A = (πs

n,G)
←(SPn

G
A).

By the continuity of the mapping πs
n,G for every m ∈ N, Vm = {(πs

n,G)
←(SPn

G
V ) : SPn

G
V ∈

SPn

G
Vm} is a collection of open sets in Xn with

A = (πs
n,G)

←(SPn

G
A)⊂ (πs

n,G)
←(SPn

G
A)⊂ (πs

n,G)
←(∪SPn

G
Vm) = ∪Vm.

Since Xn is a set star-Menger space, there exists a sequence {Um}m∈N such that Um is a

finite subset of Vm for every m ∈ N, and A ⊂
⋃

m∈N St(∪Um,Vm). Put SPn

G
Um = {SPn

G
V :

(πs
n,G)

←(SPn

G
V )∈Um}. Consequently, for every m∈N, SPn

G
Um is a finite subset of SPn

G
Vm

and

SPn

GA ⊂ π
s
n,G(

⋃

m∈N

St(∪Um,Vm))

⊂
⋃

m∈N

St(∪πn,G({(π
s
n,G)

←(SPn

GV ) : SPn

GV ∈ SPn

GUm}),SP
n

GVm)

=
⋃

m∈N

St(∪SPn

GUm,SP
n

GVm).

It means that SPn

G
X is a set star-Menger space. Theorem 3.9 is proved. �

A space X is called set strongly star-Menger if for every nonempty subset A of X and

every sequence {Um}m∈N of collections of open sets in X such that A ⊂ ∪Um, there exists

a sequence {Fm}m∈N of finite subsets of A such that A⊂
⋃

m∈N St(Fm,Um).

We can also prove the following theorem by a similar way to the proof of Theorem 3.9.

Theorem 3.10 If Xn is a set strongly star-Menger space, then so is SPn

G
X.

The following lemma is well known [7].

Lemma 3.1 A continuous mapping f : X →Y is closed if and only if for every point y ∈ Y

and every open set U ⊂ X which contains f←(y), there exists a neighbourhood V of the

point y such that f←(V )⊂U.
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We say that a space X is nearly set strongly star-Menger [15] if for every A ⊂ X and

every sequence {Um}m∈N of open covers of X there exists a sequence {Fm}m∈N of finite

subsets of X such that A⊂
⋃

m∈N St(Fm,Um).

Theorem 3.11 If the space SPn

G
X is set strongly star-Menger, then the space Xn is nearly

set strongly star-Menger.

Proof. Suppose that A is a nonempty subset of Xn and {Um}m∈N is a sequence of open cov-

ers of Xn. Consider the set SPn

G
A = πs

n,G(A)⊂ SPn

G
X . Let [x]G = [(x1,x2, ...,xn)]G ∈ SPn

G
A.

The set (πs
n,G)

←([x]G) is a finite subset of Xn, and for every m ∈N there is a finite subset

Um,[x]G of Um such that (πs
n,G)

←([x]G)⊂Um,[x]G and U ∩ (πs
n,G)

←([x]G) 6= /0 for every U ∈
Um,[x]G . Since the mapping πs

n,G is closed, by Lemma 3.1, there is an open neighborhood

SPn

G
Vm,[x]G of [x]G in SPn

G
X such that (πs

n,G)
←(SPn

G
Vm,[x]G)⊂∪{U : U ∈Um,[x]G}. Since the

mapping πs
n,G is open, we have that SPn

G
Vm,[x]G ⊆ ∩{π

s
n,G(U) : U ∈Um,[x]G}. Put SPn

G
Vm =

{SPn

G
Vm,[x]G : [x]G ∈ SPn

G
A} for any m ∈ N. It is known that SPn

G
Vm is an open cover of

SPn

G
A. Since SPn

G
X is set strongly star-Menger, there exists a sequence {SPn

G
Fm}m∈N of

finite subsets of SPn

G
A such that SPn

G
A ⊂

⋃

m∈N St(SPn

G
Fm,SP

n

G
Vm). Clearly, the sequence

Fm = {(πs
n,G)

←(SPn

G
Fm)}m∈N is a sequence of finite subsets of Xn.

We now prove that A ⊂
⋃

m∈N St(Fm,Um). Let x = (x1,x2, ...,xn) ∈ A. Then there exist

m ∈ N and [y]G ∈ SPn

G
A such that πs

n,G(x) ∈ SPn

G
Vm,[y]G and SPn

G
Vm,[y]G ∩Fm 6= /0. Since

x ∈ (πs
n,G)

←(SPn

G
Vm,[y]G ) ⊂

⋃

{U : Um,[x]G}, there is U ∈ Um,[x]G such that x ∈ U . Then

SPn

G
Vm,[y]G ⊂ πs

n,G(U), which means U ∩Fm 6= /0. Hence, x ∈ St(Fm,Um) and it follows that

A⊂
⋃

m∈N St(Fm,Um). Theorem 3.11 is proved. �

A space X is called weakly strongly star-Menger [23] if for every sequence {Um}m∈N of

open covers of X , there is a sequence {Fm}m∈N of finite subsets of X such that
⋃

m∈N St(Fm,Um)=
X . The weakly strongly star-Mengerness is weaker than the strongly star-Mengerness.

Theorem 3.12 A space Xn is weakly strongly star-Menger if and only if the space SPn

G
X is

weakly strongly star-Menger.

Proof. (⇒) Suppose that Xn is a weakly strongly star-Menger space. Let {SPn

G
Um}m∈N be

a sequence of open covers of SPn

G
X . Put

Um = {(πs
n,G)

←(SPn

G
U) : SPn

G
U ∈ SPn

G
Um}, m ∈ N.

Clearly, {Um}m∈N is a sequence of open covers of Xn. Since Xn is a weakly strongly star-

Menger space, there is a sequence {Fm}m∈N of finite subsets of Xn such that
⋃

m∈N St(Fm,Um)=
Xn. Let SPn

G
Fm = πs

n,G(Fm) for every m ∈N. Then {SPn

G
Fm}m∈N is a sequence of finite sub-

sets of SPn

G
X . If [x]G = πs

n,G(x) ∈ SPn

G
X , then

[x]G ∈ π
s
n,G(St((πs

n,G)
←(
⋃

SPn

G
Fm),Um))

⊆U πs
n,G(St((πs

n,G)
←(
⋃

SPn

G
Fm),Um))

⊆ St(
⋃

SPn

G
Fm,SP

n

G
Um).
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On the other hand, suppose that (πs
n,G)

←(
⋃

SPn

G
Fm)∩ (π

s
n,G)

←(SPn

G
U) 6= /0. Then also

πs
n,G((π

s
n,G)

←(
⋃

SPn

G
Fm))∩πs

n,G((π
s
n,G)

←(SPn

G
U)) 6= /0, so

⋃

SPn

G
Fm∩SP

n

G
U 6= /0. It shows

that the space SPn

G
X is weakly strongly star-Menger.

(⇐) Suppose that SPn

G
X is a weakly strongly star-Menger space. Let {Um}m∈N be a se-

quence of open covers of Xn and [x]G ∈ SPn

G
X . Since (πs

n,G)
←([x]G) is finite, for every m ∈

N there exists a finite subfamily Um,[x]G of Um such that (πs
n,G)

←([x]G)⊂∪Um,[x]G and U ∩
(πs

n,G)
←([x]G) 6= /0 for every U ∈Um,[x]G . Since the mapping πs

n,G is closed, due to Lemma

3.1, there is an open neighborhood SPn

G
Vm,[x]G of [x]G in SPn

G
X such that (πs

n,G)
←(SPn

G
Vm,[x]G)⊂

∪{U : U ∈Um,[x]G}. Since the mapping πs
n,G is open, we have that SPn

G
Vm,[x]G ⊆∩{π

s
n,G(U) :

U ∈Um,[x]G}. Put SPn

G
Vm = {SPn

G
Vm,[x]G : [x]G ∈ SP

n

G
X} for any m∈N. Clearly, {SPn

G
Vm}m∈N

is a sequence of open covers of SPn

G
X . Since SPn

G
X is weakly strongly star-Menger there ex-

ists a sequence {SPn

G
Fm}m∈N of finite subsets of SPn

G
X such that

⋃

m∈N St(SPn

G
Fm,SP

n

G
Vm)=

SPn

G
X . Put Fm = (πs

n,G)
←(SPn

G
Fm). Since the mapping πs

n,G is finite-to-one, a sequence

{Fm}m∈N is a sequence of finite subsets of Xn. Now we show that
⋃

m∈N St(Fm,Um) = Xn.

Let x ∈ Xn and V be an arbitrary neighbourhood of x. Since the mapping πs
n,G is open,

πs
n,G(V ) = SPn

G
V is a neighbourhood of πs

n,G(x) = [x]G. Then there exist m ∈ N and [y]G ∈
SPn

G
X such that [x]G ∈ SPn

G
V ∩ SPn

G
Vm,[y]G with SPn

G
Vm,[y]G ∩ SP

n

G
Fm 6= /0. We can choose

U ∈Um,[y]G such that SPn

G
Vm,[y]G ⊆ πs

n,G(U). Since SPn

G
Vm,[y]G ∩SP

n

G
Fm 6= /0, we have that

U ∩Fm 6= /0. Therefore, x ∈
⋃

m∈N St(Fm,Um). Thus shows that Xn is a weakly strongly

star-Menger space. Theorem 3.12 is proved. �
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65, 3 (2007), 319–332.

[4] R. B. BESHIMOV, D. N. GEORBGIOU, R. M. ZHURAEV, Index boundedness and uniform

connectedness of space of the G-permutation degree, Appl. Gen. Topol. 22, 2 (2021), 447–

459.

[5] J. CASAS-DE LA ROSA, Variations of star selection principles on hyperspaces, Math. Slo-

vaca 74, 1(2024), 171–184.

[6] D. CHANDRA, N. ALAM, Further investigations on certain star selection principles, Topol.

Appl. 328 (2023), Art. ID 108446.

[7] R. ENGELKIN, General Topology, Sigma Series in Pure Mathematics, vol. 6 (Revised ed.),

Heldermann Verlag, Berlin, 1989.

[8] V. V. FEDORCHUK, Covariant functors in the category of compacta, absolute retracts, and

Q-manifolds, Uspehi Mat. Nauk 36, 3(1981), 177–195 (in Russian).

[9] V. V. FEDORCHUK, V. V. FILIPPOV, Topology of Hyperspaces and its Applications, Math-

ematica, Cybernetica, 4(1989), Moscow.
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