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Family of Occasionally Weakly Compatible Mappings with an
Application in Dynamic Programming
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Abstract: In this paper, we investigate the existence of a unique common fixed point of families
of occasionally weakly compatible mappings along with property(E.A) satisfying a generalized
(v, ¢)-weak contraction condition involving cubic terms of distance function which generalize
some known results. As an application, we discuss the existence and uniqueness of a common
solution of certain functional equations arising in dynamic programming.
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1 Introduction and preliminaries

Banach contraction principle [6] is the basic result of fixed point theory which states
that every contraction mapping 7'(say) defined on a complete metric space E(say) has a
unique common fixed point. For the last ten decades, many researchers are trying to gener-
alize and extend this basic result in various directions. In 1976, Jungck [21] used the notion
of commuting mappings for the generalization of Banach contraction principle. In 1982,
Sessa [33] relaxed the commutative condition of mapping to weak commutative mappings.
Further, in 1986, Jungck [22] introduced the notion of compatible mappings to weakened
the notion of commutativity/weak commutativity of mappings as follows:

Definition 1.1. [22] Two self mappings S and T of a metric space (E,d) are said to be
compatible if and only if

limd(STu,,TSu,) =0,

n—yoo
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whenever {u,} is a sequence in E such that lim Su,, = lim Tu,, = z, for some z € E.
n—soo n—soo

In 1996, the concept of weakly compatible mappings was introduced by Jungck [23]
which may be consider as the minimal commutativity of mappings.

Definition 1.2. [23] Let S and T be two self mappings of a metric space (E,d). Then S and
T are said to be weakly compatible mappings if the mappings commute at their coincidence
points.

In 2002, Aamri and Moutawakil [1] introduced a generalization of noncompatible map-
pings in the form of property (E.A).

Definition 1.3. [1] Two self mappings S and T defined on a metric space (E,d) are said to
satisfy property (E.A) if there exists a sequence {u,} in E such that

lim Su,, = lim Tu,, = z, for some 7 € E.
n—soo n—soo

In 2008, Al-Thagafi and Shahzad[3] introduced notion of occasionally weakly compat-
ible mapping to generalize the notion of weakly compatible mappings as follows.

Definition 1.4. [3] The pair (S,T) is said to be occasionally weakly compatible, if there
exists a coincidence point u € E such that Su = Tu implies STu = T Su.

Remark 1.1. Weakly compatible mappings are occasionally weakly compatible mappings
but converse need not true (see [4]).

Remark 1.2. Occasionally weakly compatible mappings and property (E.A) are indepen-
dent of each other (see [5]).

In 1971, Ciri¢[10] investigated a class of self mappings on a metric space (E,d) satis-
fying the following condition.

d(fu,gv) < kmax{d(u,v),d(u, fu),d(v, fv), %[d(u,fV) +d(v, fu)l}, (1)

where 0 < k < 1. In 1974, Ciri¢ [11] proved common fixed point theorem for a family of
mappings satisfying the condition (1) as follows.

Theorem 1.1. [11] Let (E,d) be a complete metric space and {T;}icp be a family of self
mappings defined on E. If there exists a fixed j € A such that for eachi € Aand allu,v € E

d(Tu,Tv) < Amax{d(u,v),d(u,Tu),d(v,Tjv), %[d(u, Tjv)+d(v,Tu))},

where A = A(i) € (0, 1), then all T; have a unique common fixed point in E.

In 2005, Singh and Jain [32] proved the following fixed point theorem for commuting
self mappings.
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Theorem 1.2. [32] Let (E,d) be a complete metric space and A,B,P,Q,S and T be self
mappings on E such that

H,) P(E)CST(E), Q(E) CAB(E);

Hy) ST =TS, PB=BP,AB=BA, QT =TQ;

either AB or P is continuous;

(
(
(H3
(Hy) the pair (Q,ST) is weakly compatible and the pair (P,AB) is compatible;
(

)
)
)
Hs) forall u,v € E and for some k, 0 <k < 1,

d(Pu,Qv) < kmax{d(Pu,ABv),d(Qv,STv),d(ABu,STv),
%[d(Pu, STv) +d(Mv,ABu)]}.

Then P,Q,S,T,A and B have a unique common fixed point.

In 2008, Ciri¢ et al. [12] proved common fixed point theorems for family of mappings
satisfying generalized non-linear contraction condition of type (1) in metric spaces and gen-
eralized the result of Singh and Jain [32].

Another direction of generalization of Banach contraction principle concerns with the
use of control function. In 1969, Boyd and Wong [8] introduced ¢ contraction of the form
d(Tu,Tv) < ¢(d(u,v)), for all u,v € E, where T is a self mapping on a complete metric
space E and ¢ : [0,00) — [0,0) is an upper semi continuous function from right such that
0<¢(t) <t forallz > 0. In 1997, Alber and Guerre- Delabriere [2] generalized ¢ con-
traction to ¢ —weak contraction in Hilbert spaces, which was further extended and proved
by Rhoades [31] in complete metric space.

A self mapping T on a complete metric space is said to be a ¢ — weak contraction
if for each u,v € E, there exists a continuous non-decreasing function ¢ : [0,00) — [0, 00)
satisfying ¢ (z) > 0, for all # > 0 and ¢ (r) = 0 if and only if # = O such that

d(Tu,Tv) <d(u,v) — ¢(d(u,v)). 2)

The function ¢ in the above inequality (2) is known as control function or altering dis-
tance function. The notion of control function was given by Khan et al. [26] : an altering
distance is an increasing and continuous function ¢ : [0,e0) — [0,0) vanishing only at zero.

In 2009, Zhang and Song [35] gave the notion of generalized ¢ — weak contraction by
generalizing the concept of ¢ —weak contraction.

Theorem 1.3. [35] Let (E,d) be a metric space and S and T be two self mappings defined
on E such that for u,v € £

d(Su,Tv) < M(u,v) — ¢(M(u,v)), 3)
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where M (u,v) = max{d(u,v),d(u,Su),d(v,Tv), w} and ¢ : [0,00) — [0,00) is a
lower semi continuous function with ¢(t) > 0, for allt > 0 and ¢(0) = 0. Then, there exists
a unique point u € E such that Su =u = Tu.

In 2011, Razani and Yazdi [30] proved a common fixed point theorem for a family of
compatible mappings satisfying generalized ¢ —weak contraction condition of type (3).

In 2013, Murthy and Prasad [29] introduced a weak contraction involving cubic terms
of distance function and proved the following fixed point theorem for a mapping.

Theorem 1.4. [29] Let T be a self mapping on a complete metric space E satisfying:

[1+ pd(u,v)]d*(Tu,Tv) < pmax { % [d?(u, Tu)d (v, Tv) +d(u, Tu)d*(v,Tv)],

d (1, Tu)d (u, Tv)d (v, Tu), d(ut, Tv)d (v, Tu)d (v, Tv)} Fm(u,v) — o (m(u,v)),
where

m(u,v) = max {dz(u, v),d(u,Tu)d(v,Tv),d(u,Tv)d(v,Tu),

1

5[ Tw)d(u, Tv) +d (v, Tu)d (1, Tv)] }

where p > 0 is a real number and ¢ : [0,00) — [0,0) is a continuous function with ¢(t) =0
if and only ift =0 and ¢(t) > 0 for each t > 0. Then T has a unique fixed point in E.

Theorem 1.4 was extended and generalized for a variety of commuting self mappings
on metric space [15, 16, 17, 20, 25, 28]. In 2022, Kavita and Kumar [25] introduced a
generalized (y, ¢)-weak contraction involving cubic terms of metric function and general-
ized the Theorem 1.4. Motivated by Cirié et al. [12], [13], we establish the existence and
uniqueness of common fixed point for family of occasionally weakly compatible mappings
satisfying a generalized (y, ¢ )-weak contraction involving cubic terms of metric function.
These results generalize and extend the results of Ciri¢ [11], Ciri¢ et al.[12], Chugh and
Kumar [9], Jain et al. [16, 18, 19, 20], Kang et al. [27], Murthy and Prasad [29], Razani
and Yazdi [30] and Singh and Jain [32] and Zhang and Song [35]. Further, as an applica-
tion of our result, we obtain a common solution to a certain system of functional equation
arising in the dynamic programming.

2 Main Results

4

Let ¥ is a collection of all functions y : [0,c0)* — [0, o) satisfying the following con-

ditions:
(y1) v is non decreasing and upper semi continuous in each coordinate variables,
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Let @ be a collection of all the functions ¢ : [0,00) — [0,0) satisfying the following
conditions:

(¢1) ¢ is a continuous function,
(¢2) ¢(t) >0 foreachs>0and ¢(0)=0.

Throughout this section, C(S,T) denotes the set of coincidences points of mappings S
and T and let A’ = AyA4---As, and A” = AjA3---Ay,_1, where A;, i = 1,2,...,2n are as
mentioned in the following theorems.

Theorem 2.1. Let S, T and A;, i = 1...2n, be self mappings of a metric space (E,d)
satisfying the following conditions:

(Cy) for all u,v € E, there exists functions y € ¥ and ¢ € ®, a real number p > 0 such
that

(14 pd(A'u,A"v)]d*(Su,Tv) < pl//(dz(A’u,Su)d(A”v, Tv),d(A'u,Su)d*(A"v,Tv),

d(A'u,Su)d(A'u, Tv)d(A"v,Su),d(A"u, Tv)d(A"v,Su)d(A"v, Tv)) +

+m(A'u,A"v) — ¢ (m(As -+ Asuu,A"v)),
where
m(A'u,A"v) = max {dz(A'u,A“v),d(A/u,Su)d(A"v, Tv),d(A'u,Tv)d(A"v,Su),

1
S [, Su)d (A, Tv) + d(A", Su)d (A", Tv)]}.

(C>) Suppose that either

(a) T(E) C A/(E) and the pair (T,A") satisfy the property (E.A) and A" (E) is a
closed subset of E; or
(b) S(E) C A”(E) and the pair (S,A’) satisfy the property (E.A) and A'(E) is a
closed subset of E
Then C(S,A") # 0 and C(T,A”) # 0.

Proof. Suppose (a) holds.
Since the pairs (T,A") satisfy the property (E.A), there exist a sequence {v;} in E such that

lim A”vy = lim Tv, = w, for some w € E.
k—>o0 k—>o0



182 Penumarthy P. Murthy, Kavita, Sanjey Kumar, Ersin Gili¢

Since T(E) C A'(E) there exists a sequence {uy} such that Tvy = A'uy. Hence, ]}im Aluy =
—»00

w. We claim that ]}im Sux = w. Taking u = uy and v = vy in (Cy), we have
— 00

[1+ pd(A'ug, A"vi)|d*(Su, Tvy) < pwr (dz(A’uk,Suk)d(A”vk, Twy),

d(A'uk,Suk)dz(A”vk, Tvk),d(A'uk,Suk)d(A'uk, Tvk)d(A”vk,Suk),
d(A’uk, Tvk)d(Ava,Suk)d(Ava, Tvk)) + m(A’uk,A"vk) — ¢(m(A2 . -Az,,uk,A”vk)),

where
m(A'ug,A"vi) = max {dZ(A’uk,A”vk),d(A’uk,Suk)d(A“vk, Tw),

1
d(A/uk, Tvk)d(A”vk,Suk), 5 [d(A’uk,Suk)d(A’uk, Tvk) + d(Ava,Suk)d(Ava, Tvk)]}.
Letting k — oo

[1+4 pd(w,w)]d*(lim Suz,w) < py (dz(w, lim Sug)d (w,w),d(w, lim Su)d*(w,w),
k—yo0 k—ro0 k—so0

d(w, lim Sug)d (w,w)d (w, lim Suy),d(w,w)d(w, lim Suk)d(w,w))

+m(w,w) — ¢ (m(w, w)),
where
m(w,w) = max {dz(w,w),d(w, kh%r{.lo Su)d(w,w),d(w,w)d(w, ]}Lrg Suy),
%[d(w, lim Su)d (w, w) +d(w, Jim Suk)d(w,w)]} —0.
Simplifying the above inequality, we have d* (]}1_{210 Sug,w) <0, which holds only for lll—rilo Suy, =
w.

Since A" (E) is a closed subset of E, then there exists z € E such that w = A"z. Now, we
prove that Tz = w, for this taking u = uy and v =z in (C), we have

(14 pd(A'uy,A"7)|d*(Su, Tz) < py <d2 (A'uy, Su)d(A"7,T7),

d(Auy, Su)d*(A"z,Tz),d(A ug, Su )d (A uy, Tz)d (A" 7, Suy,),

d(A'u, Tz)d(A"z, Su)d (A" z, Tz)> +m(A'ug,A"z) — ¢ (m(Ay - - Agyut, A7),
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where
m(A'u,A”z) = max {dz(A/uk,A”z),d(A/uk,Suk)d(A”z, Tz),d(A'w, Tz)d(A"z,Suy),

1
[ (Aw S )d (A'ug, T2) + d (A", Su)d(A"2,T2)] } :

Letting k — oo
[1+ pd(w,w)]d*(w,Tz) < py(0,0,0,0) + m(w,w) — ¢ (m(w,w)),
where

m(w,w) = max {d2(w, w),d(w,w)d(w,Tz),d(w,Tz)d(w,w),
1

D) [d(w,w)d(w,Tz) +d(w,w)d(w, TZ)]} =0.

After simplification, we get d*(w,Tz) < 0, which is true only for Tz = w. Hence, A"z =
w=Tgzie., C(T,A") 0.
Since T(E) C A'(E), there exists x € E such that w = Tz = A'x. Now, we claim that Sx = w.
Substituting u = x and v =z in (Cy), we get

[1+ pd(w,w)]d*(Sx,w) < pw(0,0,0,0) + m(w,w) — ¢ (m(w,w)),
where
m(w,w) = max {dz(w, w),d(w,Sx)d(w,w),d(w,w)d(w,Sx),

1
Sd 0w S0)d(w,w) +d(w, Sx)d(w,w)]} —0.

Simplifying the above inequality, we get d*(Sx,w) < 0, which is possible only if Sx = w.
Hence, A'x =w = Sx, i.e., C(S,A") # 0.

Similarly, the assertion of the theorem are true under the assumption (b).

Now, we establish the existence of a unique common fixed point for even number of
occasionally weakly compatible mappings.

Theorem 2.2. Let S, T, A;(i = 1,2,...,2n) be self mappings of a metric space (E,d) satis-
fying the conditions (Cy), (C) and

(C3) A1(Az---Agp1) = (A3---Agy_1)Ay,
A1A3(As---Agy—1) = (A5 Agp1)A1A3,

A1A3 - Agy3(Agp—1) = (A2p—1)A1A3 - Agy_3;
T(Az---Apy1) = (Az---Ag1)T,
T(As---Axy1) = (As---Az1)T,
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TAy, 1 = AT,
AZ(A4"'A2n) — (A4"'A2n)A2»
ArA4(Ag-+-Ady) = (A~ -+ Azn)ArAs,

ArAs---Agy—2(A2n) = (A2n)A2A4 - - Agy_2;
S(A4~-A2,,) = (A4“'A2n)5,
S(A6"'A2n) = (A6"'A2n)S»

SAs, = AgyS.

If the pairs (T,A") and (S,A") are occasionally weakly compatible, then mappings Ay,A,,...,
Agp—1, Aoy, S and T have a unique common fixed point in E.

Proof. By Theorem 2.1, C(T,A") # 0 and C(S,A’) # 0. Since the pairs (S,A) is occa-
sionally weakly compatible mappings, there exists a point 7 € C(S,A") such that A’z = Sz =
x(say) and A'Sz = SA'z = x*(say), hence A'x = A'Sz = x* = SA'z = Sx.

Since the pair (T,A") is occasionally weakly compatible mappings, there exists a
point w € C(T,A”) such that A"w = Tw = y(say) and A"Tw = TA"w = y*(say), hence
A’y =A"Tw=y* =TA"w =Ty. We claim that x* = y*. Taking u=x and v =y in (Cy), we
get

[1+ pd(A'x,A"y)|d*(Sx, Ty) < py (dz(A’x, Sx)d(A"y, Ty),d(A'x,Sx)d*(A"y, Ty),

d(A'x,Sx)d(A’x,Ty)d(A"y,Sx),d(A'x, Ty)d(A"y,Sx)d(A"y, Ty))
+m(A'x,A"y) = ¢ (m(A'x,A"y)),
where
m(A'x,A"y) = max {d2 (A'x,A"y),d(A’x,Sx)d(A"y,Ty),d(A'x, Ty)d(A"y, Sx),
% [d(A'x,Sx)d(A'x,Ty) +d(A"y,Sx)d(A"y, Ty)] }
Simplifying the above inequality, we have
[+ pd(x*,y")]d*(x",y") < py(0,0,0,0) +m(x",y") — ¢ (m(x",y")),
where

m(x,y') = max {d(x" y),0,d(x" y)d (" x), 0} = 2 (x",y7).

We conclude that pd>(x*,y*) + ¢ (d*(x*,y*)) < 0, which is true only for x* = y*, hence,
A'x = Sx =x* and A"y = Ty = x*. Next, we claim that x* = x. For this, taking u=z,v=y
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in (Cy), we get

(14 pd(A'z,A"y)]d*(Sz,Ty) < py (dz(A’z,SZ)d (A"y, Ty),d(A'z,Sz2)d*(A"y, Ty),

d(A'z,Sz)d(A'z, Ty)d(A"y,Sz),d(A'z, Ty)d(A"y,Sz)d (A" y, Ty))

+m(A'z,A"y) — ¢ (m(A'z,A"y)),
where

m(A'z,A"y) = max {d2 (A'z,A"y),d(A'z,Sz)d(A"y, Ty),d(A'z, Ty)d(A"y,Sz),

]
S [A(AZ, S2)d(A'2, Ty) + d(A"y,S2)d (A", Ty)] } ,

which implies that
[1+ pd (3,6 )|d(x,2*) < py(0,0,0,0) -+ m(x,x*) — ¢ (m(x,x")),
where

m(x,x*) = max{dz(x,x*),O,d(x,x*)d(x*,x),O} = d*(x,x").

After simplification, we get pd>(x,x*) + ¢ (d*(x,x*)) < 0, which holds only for x = x*.
Hence, Sx = A’x = x and A"y = Ty = x. Further, we claim that x = y. Taking u=x, v=w

[1+ pd(A'x,A"w)|d*(Sx, Tw) < py <d2 (A'x,Sx)d (A" w,Tw),d(A'x, Sx)d* (A" w, Tw),

d(A'x,Sx)d(A'x, Tw)d (A" w, Sx),d(A'x, Tw)d (A" w, Sx)d (A" w, Tw))

+m(A'x,A"w) — ¢ (m(A'x,A"w)),
where

m(A'x,A"w) = max {dz(A/x,A“w),d(A’x,Sx)d(A“w, Tw),d(A'x, Tw)d(A"w, Sx),

1
(A%, Sx)d (A'x, Tw) +d(A"w,Sx)d (A" Tw)] }

which implies that

[1+ pd(x,y)ld? (x,y) < py(0,0,0,0) +m(x,y) — ¢ (m(x,y)),

where

m(x,y) = max {dz(x,y),O,d(x,y)d(y,x),O} =d?(x,y).
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After simplification, we get pd>(x,y) + ¢ (d*(x,y)) < 0, which is possible only for x =y
and hence, A'/x =Sx =A"x=Tx=x.
Taking u =Ay---Aypx and v =x in (Cy), we have

(14 pd(A'Ay - Agux, A"x)|d* (SA4 - - Agpx, Tx) <

Py <d2(A’A4 o Aopx,SA4 - - Agux)d(A"x, Tx),d(A'Ay - - Agyx, SA4 - - - Anyx)d* (A" x, Tx),
d(A'Ay-Apx,SAy - Apx)d(A'Ay -+ - Aopx, Tx)d (A" x,SA4 - - - Appx),
d(A'Ay- - Agyx, Tx)d(A"x,8A4 - Agux)d (A" x, Tx)) +

+m(A'Ag - Agux, Ax) — 9(m(A'Ay - - - Az, Ax)),
where

m(A'Ay -+ Agyx,A"x) = max {d2 (A'Ay -+ Agyx, A'x),

d(A'Ay---Apx,SAy - Agx)d(A"x, Tx),

d(A'Ay---Apx, Tx)d(A"x,5A4 - - Ag,x),
1

3 [d(A/A4 o ~A2,,x, SA4 . -Aznx)d(A/A4 . -Aznx, Tx)
+d(A"x,SAy - Agyx)d(A"x, Tx)] } .

Applying condition (C3) and Tx = A”x = x, we have

[1+ pd(Ay- - Aoyx, X)]d* (As - - Agux,x) < pyr (dz(A4 - AgpX, Ay -+ - Agyx)d(x,x),

d(Ag--Apx,Ag- - Agyx)d*(x,x),d(Ag - AguX,Ag - ApyX)d(Ag - Ay, x)d (x, Ay - - AgyX),

d(Ag--Agpx,x)d(x,Ag - - 'Az,,x)d(x,x)> +m(Ag--Agyx,x) — @(m(Ag - - Agpx, X)),
where
m(Ag -+ Agyx,x) = max {d2 (Ag---Agpx, x),

d(Ag---Agux, Ay Agyx)d (x,x),
d(A4 . -Az,,x,x)d(x,A4 . -Aznx),

1
3 [d(Ag--Appx, Ay - AgpX)d(Ag - - - ApX, X)

+ d(x7A4 . 'A2nx)d(x7x)] } )
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which implies that

[1 +pd(A4 o 'Alnxax)]dz (A4 a ’A2nx7x) < pll’(oa 07 07 0) + m(A4 o 'A2nx7x)
— ¢(m(Aq---Agx, X)),

where

m(Ag---Agyx,x) = rnax{d2 (Ag-- -Az,,x,x),O,d2 (Ag---Agpx,x),0} = d? (Ag- - Agpx,x),
which becomes pd*(Ay---Apx,x) + ¢(d*(Ag -+~ Azux,x)) <0, which holds for Ay - - Ag,x =
x. Therefore, x = A'x = AyAy -+ Axux = Apx.
Continuing in this manner, we get Sx = Apx = Agx = ... = Ay x = x.

Taking u=x and v = Az ---Ay,_1x in (Cy), we have

[1+ pd(A'x,A"Asz - Asy_1x)|d* (Sx, TA3z - - Ay _1x) <
PV <d2(A’x, Sx)d(A"Az -+ Agy_1x,TA3---Ag,_1X),

d(A'x,Sx)d*(A"A3 -+ Agy_1x,TA3 -+ Agy_1X),
d(A’x,Sx)d(A’x, TA3 . 'Azn_lx)d(A//Ag o -Azn_lx,Sx),

d(A'x,TA3- Ay 1x)d(A"Az - Agy_1x,5x)d (A" A3 - - - Agy_1x, TA3z - - 'Aznlx)> +

+m(A'x,A"Az - Ay, 1x) — 0 (m(A'x,A" A3z - Ay, 1x)),

where
m(A'x,A"As - A, 1x) = max {d2 (A, A"A3 - Agn_1x),

(A'x,Sx)d(A"As - Agy 1%, TA3 - Agy1x),d(A'x, TA3 - Ay 1x)d (A" A3 - - Ay 1X, Sx),
%[d(A’x, Sx)d(A'x,TA3 - App_1X)+
Fd(A"Az - Agy1%,SX)d(A" A3 - Agy_ 13, TA3 -+~ Agy_1)] }
Applying condition (C3) and A'x = Sx = x, we have

[1+ pd(x,As - Agy_1x)|d*(x,A3 -+ Azy_1x) < p Y <d2 (x,x)d(A3---Azy_1X,A3---Agy_1X),

d(x,x)d2 (Ag .. -Azn_lx,A3 .. -Azn_lx),d(x,x)d(x,A3 .. -Azn_lx)d(Ag o ~A2,,_1x,x),

d(x,Az---Agy_1x)d(Az -+ Agp_1x,x)d(A3 - - - A2y 1X,A3 - - 'A2n1x)> +
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+m(x,Az - Agp_1x) — @ (m(x,A3 - - - Agp_1x)),
where
m(x,A3 o -Agnflx) = max {dz(x,A3 o -Azn,lx),
d(x,x)d(A3 - Agy_1X,A3 -+ Agy_1X),d(X,A3 - - Agy_1X)d (A3 - - - Agyp_1X,X),

1
3 [d(x,x)d(x,A3 - Agp_1x) +d(A3---Agy_1X,x)d (A3 - - - A2y 1X,A3 - - - Agy—1X)] }7

After simplification, the above inequality becomes pd>(x,A3 ---As,_1x) < 0, which is pos-
sible only if d(x,A3---Ay,—1x) = 0. This implies that A3 ---Ay,_1x = x. Therefore, Tx =
Aix=Aszx=..=Ay,_1x=x.Hence, Sx=Tx =A1x =Ax =Azx... = Ap_1x =Ap,x = x.
Uniqueness follows easily. Thus, x is a unique common fixed point of mappings S, T and
Ai(i=1,2,...,2n). This completes the proof-

Now, we present slight generalized form of the above stated Theorems.

Theorem 2.3. Let (E,d) be a metric space and let {S) } e and A;(i = 1,2,...,2n) be two
Sfamilies of self mappings of E. Suppose there exists a fixed o¢ € A such that:

(Cq) fory €V, ¢ € D, real number p > 0 and for all u,v € E,
[1+ pd(A'u,A"v)|d*(Squ,S;v) < py <d2 (A'u,Squ)d(A"v,S;v),

d(A'u,Squ)d*(A"v,S3v),d(A'u,Squ)d(A'u,S; v)d(A"v,Squ),
d(A'u,S;v)d(A"v,Squ)d(A"v, S,w)) +m(A'u,A"v) — ¢ (m(A'u,A"v)),

where

m(A'u,A"v) = max {dZ(A’u,A”v),d(A’u,Sau)d(A”v, Sav),d(A'u, Sy v)d(A"v, Squ),

1
S, Squ)d(A'u, $,v) + d(A"v, Sau)d (A7, }
(Cs) A1(Az---Azp—1) = (A3~ Agp1)Ay,

A1A3(As---Agp—1) = (A5 -Agy_1)A A3,

AlAz---Ag3(A2n—1) = (A2n—1)A1A3 - Agy3;
Sa(Az---Agp1) = (A3---A2n—1)S,
Sp(As - Ap1) = (As---A2u—1)S1,

S3A21 =A2%_153;
Ar(Ag---Any) = (As---Agy)Ay,
A2A4(Ag---Azy) = (Ag - Adn)ArAy,
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ArAs---Agy—2(A2n) = (A2n)A2A4 - - Ay,
Sa(As---Az) = (As---A2)Sq,
Sa(Ae---Azy) = (Ag---A2n)Sa,

SaAon = AonSa;
(Ce) Suppose that either

(a) S, (E) C A/(E) and the pair (S ,A") satisfy the property (E.A) and A" (E) is a
closed subset of E; or

(b) Sq(E) C A"(E) and the pair (Sq,A’) satisfy the property (E.A) and A'(E) is a
closed subset of E

Then the pairs (S¢,A’) and (S ,A”) have a coincidence point each. Moreover, all S; and A;
have a unique common fixed point in E, if the pairs (Sy,A") and (Sq,A’) are occasionally
weakly compatible mappings.

Proof. Let Sy, € {S) }sen be fixed. By taking S =S4, T = Sy, and applying Theorems 2.1
and 2.2, it follows that there exists some 7 € E such that

Saz=S8)z2=A12=Az=A32=... = Ay 12=Apz=12

Let A € A be arbitrary. Then, by taking u =v = z in (Cy), we get

[14 pd(A'z,A"2)|d*(Suz,522) <p¥ (dz(A’aSaZ)d (A"2,812),d(A'z,S02)d* (A", 5, 2),
d(A'7,842)d(A'7,8,,2)d(A"z,842),
d(A'z,8,2)d(A"z,S42)d(A"z, S,ﬂ))
+m(A'z,A"z) — ¢(m(A'z,A"z)),
where
m(A'z,A"z) = max {d2 (A'2,A"2),d(A'z, Saz)d(A"2,5,2),d(A'2,8,2)d(A" 2, So2),

1

S (A2, Sa2)d(4'2,52) + d (A7, Sa2)d (42, 5.2)] .
Simplifying the above inequality becomes d*(S) z,z) < 0, which is true only for S,z = z.

Since A was arbitrary, therefore Sz = z, for each A € A. Uniqueness follows easily. Thus,

all Sy and A; have a unique common fixed point in E.

Remark 2.1. Theorems 2.2 and 2.3 generalize the result of Ciri¢ et al. [11, 12] and Razani
and Yazadi [30] for family of mappings.
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Remark 2.2. Taking n =2 in Theorem 2.2, we obtain a generalized version of Theorem 1.2
for six mappings.

Remark 2.3. Taking n = 1 in Theorem 2.2, we get following theorem, which extend and
generalize the results of C‘iric’[ 10], Chugh and Kumar [9], Jain et al. [16, 18, 19, 20],
Jungck [21], Kang et al. [27], Murthy and Prasad [29] and Zhang and Song [35] in
various aspects.

Theorem 2.4. Let (E,d) be a metric space and S,T,A| and A, be four self mappings of E
satisfying the following conditions

(Cyx) for all u,v € E, there exists functions ¢ € ® and y € ¥ with a positive real number
p such that

[1+ pd(Aau,Ayv)|d? (Su, Tv) < pw<d2(A2u,Su)d(A1v, Tv),

d(Ayu, Su)d? (Ayv, Tv),d(Asu,Su)d(Ayu, Tv)d(Av,Su),
d(Ayu, Tv)d(Ayv,Su)d(Ayv, Tv)) + m(Au,A1v) — ¢ (m(Aru,Apv)),

where

m(Apu,A1v) = max {dz(Azu,Alv),d(Agu,Su)d(Alv, Tv),d(Ayu,Tv)d(Av,Su),

%[d(Azu,Su)d(Azu, Tv) + (A, Su)d(A,v, Tv)]}.

(Cax) assume that either of the following holds

(a) T(E) C Ay(E) and the pair (T,A;) satisfy the property (E.A) and A|(E) is a
closed subset of E;

(b) S(E) C A(E) and the pair (S,A;) satisfy the property (E.A) and A>(E) is a
closed subset of E.

Then the pairs (S,Ay) and (T,A}) have a coincidence points each. Moreover, if the pairs
(S,A;) and (T,Ay) are occasionally weakly compatible, then S,T,A| and A, have a unique
common fixed point in E.

Example 2.1. Let E = [0, 10] and d be a usual metric. Let A1,A,,S,T : E — E be four map-
pings defined by Ayu = 0,u = 0,Au = 8,u € (0, %],Azu =u— %,u € (%, 10]; Su=0,u €
(3,10]U{0},Su = 4,u € (0,3]; Aju=0,u=0,Aju=4,u € (0,10]; Tu =0,u=0,Tu =
2,u € (0,10]. Let p > 0 be a real number and ¢ : [0,00) — [0,00) be a function defined
by ¢(t) = 3t, for t > 0 and y : [0,00)* — [0,00) be a function defined by W(t|,t2,13,t4) =
max {t),h, 13,14}, t; > 0,i = 1,2,3,4. Consider a sequence {u,} = {2.5+ %} in E. Then
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lim Ayu, = 0 = lim Suy, but lim d(A,Su,,SAyu,) # 0. Hence, the pair (A3, S) is not com-
n—oo

n—eo n—eo

patible but satisfy the property (E.A). Also, S C Ay(E), Ay(E) is closed and for the sequence
{u,} = {0}, the pairs (A2,S) and (A1, T) are occasionally weakly compatible. Hence, all
the conditions of the Theorem 2.2 are satisfied and 0 is the unique common fixed point of
AQ,Al,S and T.

Corollary 2.1. Let (E,d) be a metric space and S and A be two self mappings of E satisfying
the following conditions

(Csx) for all u,v € E, there exists functions ¢ € ® and y € ¥ with a positive real number
p such that

[1+ pd(Au,Av)]d*(Su,Sv) < pq/<d2(Au,Su)d(Av, Sv),d(Au, Su)d* (Av, Sv),

d(Au,Su)d(Au,Sv)d(Av,Su),d(Au,Sv)d (Av, Su)d (Av, Sv)> +
m(Au,Av) — ¢ (m(Au,Av)),
where
m(Au,Av) = max {dz(Au,Av),d(Au,Su)d(Av, Sv),d(Au,Sv)d(Av,Su),

%[d(Au,Su)d(Au,Sv) +d(Av,Su)d(Av, S)] } ,

(Cyx) S(E) CA(E) and A(E) is a closed subset of E,
(Csx) the pair (S,A) satisfy the property (E.A).

Then S and A have a coincidence point. Moreover, if the pair (S,A) is occasionally weakly
compatible, then S and A have a unique common fixed point in E.
Proof. Proof follows easily by taking S =T and A1 = Ay = A in Theorem 2.4.

3 Application

Throughout this section, we assume that U and V are Banach spaces, S CUandDCV
are state and decision spaces respectively. Let R denote the field of real numbers and B (S’ )
denotes the set of all bounded real valued functions on S.

Bellman and Lee [7] presented the basic form of functional equation of dynamic pro-
gramming as follows:

h(u) = opt, G(u,v,h(t(u,v))),

where u and v are the state and decision vectors respectively, 7 is the transformation of the
process and A(u) is the optimal return with initial state # and opr denotes max or min.
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As an application of Theorem 2.4, we investigate the existence and uniqueness of a
common solution of the following functional equations arising in dynamic programming.

A

hi(u) = sup G;(u, v, hi(t(u,v))),u €S, 4)
veD

ki(u) = supF;(u,v,k;(t(u,v))),u € S, (5)
veD

where T:SxD— Sand Gi,F;: SxDxR = R,i=1,2.
Define P, and Q; as follows

Pif (u) = sup Fy(u, v, f(t(u,v))),u €8,

veD (6)
Qig(u) = squi(u,v,g(T(u,v))),u € SA,
veD

forallucS; f,g € B(S),i=1,2.

Theorem 3.1. Suppose that the following conditions hold:
(D1) G; and F; are bounded fori =1,2.

(Dy) Assume that either (a) - (¢) or (d) - (f) holds

(a) for any f € B(S), there exists g € B(S) such that Q\ f(u) = Pyg(u), u € §;

(b) there exists { f,} C B(S) such that ,}L%Plfn(”) =f(u) = r}g& 01 fn(u), for some
feB(S);

(c) for sequence {f,} C B(S) and f € B(S) with ,}i_rgplf"(”) = f(u), there exists
f* € B(S) such that f(u) = Py f*(u), for some u € $;

(d) for any k € B(S), there exists h € B(S) such that Q2k(u) = Pih(u), u € S;

(e) there exists {g,} C B(S) such that r}i_r}r;lg&g,, (u)=gu) = r}l_rg 028n(u), for some
g € B(S);

(f) for sequence {g,} C B(S) and g € B(S) with r}iqungn(u) = g(u), there exists
g* € B(S) such that g(u) = P,g*(u), for some u € S.

(D3) There exist f,g € B(S), PLf = Q\f implies that Q1P f = PO, f and P»g = Q»g im-
plies that P,Qrg = Q) P»g.

(Dy) Forall (u,v) €S xD, f,g € B(S),t €S such that
‘Gl (M,V,f(t)) - GZ(u7v7g(t))‘ S M_l (p W(dz(P1f7Q1f)d(P2g7Q2g)7

d(Pif,01f)d*(Pg,028),d(Pi f,Q1f)d(Pif,028)d(P2g, Q1 f),
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d(Pif,028)d(P.g, Q1 f)d(Pg, ng)) +m(P f,Prg) — ¢(m(P1f7P28))> ;

where
m(Pif,Prg) = max {d*(Pi f,P2g),d (P f, Q1 f)d(Prg, 028),

1
d(Pif,0:8)d(P2g,028), E[d(Plfanf)d(Plfa 0:8)| +d(P>g,01f)d(Pg,0:8) },
M = [1+psup P f(u) — Pg(u)|] sup Q1 f(u) — Qag(u)|, 01 f # Q28 § €, y € ¥,

ues ues
p is a positive real number and the mappings Py, P>, 0 and Q; are defined as in (6).

Then the system of functional equations given by (4) and (5) have a unique common solution

erfo(;)‘l,etd(h,k) = sup \h(u) —k(u)|, for any h,k € B(S). Obviously, (B(S),d) is a complete
metric space. For 1 M>ESO ueSand 821,82 € B(S') there exists vi,vy € D such that

0igi(u) < Gi(u,vi, gi(u;)) +1, (7
where u; = t(u,v;),i = 1,2. Also, we have

0181(u) > Gi(u,v2,81(u2)), ®)

0282(u) > Ga(u,v1,82(u1)). ©)

From (7),(9) and (Dy), we have
0181 (u) — Q282 (1) <Gi(u,v1,81(u1)) — Ga(u,v1,82(u1)) +1

<Mm! (P ‘//(dz(Plglangl)d(P2827Q282)7

d(Pig1,0181)d*(P2g2,0282),

d(P1g1,0181)d(Pig1,0282)d(P2g2, 0181), (10
d(Plgl,ngz)d(Pzgz,ngl)d(Pzgz,ngz))
+m(Pig1,P2g2) — ¢(m(P181,P282))> +1,
From (7), (8) and (D), we have
Q181(u) — Q282(u) >Gi(u,v2,81(2)) — Ga(u,v2,82(u2)) — 1
>-M" (p l//(dz(Plgungl)d(Pzgz,ngz),
d(Pig1,0181)d* (P82, 0282),
(11)

d(Pig1,0181)d(Pi1g1,0282)d(P2g2,0181),
d(P1g1,0:82)d(P2g2,0181)d(P-g2, ngz))

+m(Pig1,P-82) — ¢(m(P1g1,P2g2))> -,
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From (10) and (11), we obtain

10181 (1) — Q2go(w)| <M ™! <17 W(dz(Plgthgl)d(Pzgz, 0:82),

d(Pig1,0181)d*(P2g2,0282),
d(Pig1,0181)d(Pi1g1,0282)d(P2g2,0181), (12)

d(Pig1,0282)d(P2g2,0181)d(P2g2, Q282)>

+m(Pig1,Pr82) — ¢(m(P181=P282))> +n,

As 1 > 0 is arbitrary and (12) is true for all u € S, taking supremum, we get

[1+ pd(Pig1,Pg2)|d*(Q181,0282) <p W(dz(Plgl ,0181)d(P2g2,0282),

d(Pig1,0181)d*(P2g2,0:282),
d(Pig1,0181)d(Pig1,0282)d(P-g2,0181), (13)

d(P1g1,0282)d(P2g2,0181)d (P82, ngz))
+m(Pig1,Prg2) — ¢(m(Pig1,Prg2)).

Therefore, Theorem 2.4 applies, where Py, P>, Q1,Q> correspond to the mappings Ay,A1,S, T
respectively. So, P, P>, Q1 and Qy have a unique common fixed point h* € B(S') Le, *(u)is
a unique common solution of the system of functional equations (4) and (5).
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