Some properties of meromorphic solutions of higher order linear difference equations

Authors: Belaïdi Benharrat, Benkarouba Yamina

Keywords: complex linear difference equation; meromorphic solution; iterated p-order; iterated p-type

Abstract:

Abstract: In this paper, we investigate the growth of solutions of the linear difference equations Ak(z)f(z+ck) +Ak-1(z)f(z+ck-1) +···+A1(z)f(z+c1) +A0(z)f(z) = 0, Ak(z)f(z+ck) +Ak-1(z)f(z+ck-1) +···+A1(z)f(z+c1) +A0(z)f(z) = F(z), where Ak(z),··· ,A0(z), F(z)(/≡ 0) are entire functions and ck ,··· , ck1 are distinct non-zero complex numbers. We extend some precedent results due to Liu and Mao [15].

References:

[1] M. J. ABLOWITZ, R. HALBURD, B. HERBST, On the extension of the Painlev´e property to difference equations. Nonlinearity 13 (3) (2000) 889–905. [2] B. BELA¨ IDI, On the [p,q]-order of meromorphic solutions of linear differential equations. Acta Univ. M. Belii Ser. Math. 23 (2015), 57–69. [3] T. B. CAO, J. F. XU, Z. X. CHEN, On the meromorphic solutions of linear differential equations on the complex plane. J. Math. Anal. Appl. 364 (1) (2010) 130–142. [4] Z. X. CHEN, Growth and zeros of meromorphic solution of some linear difference equations. J. Math. Anal. Appl. 373 (1) (2011) 235–241. [5] Z. X. CHEN, K. H. SHON, On growth of meromorphic solutions for linear difference equations. Abstr. Appl. Anal. 2013, Art. ID 619296, 1–6. [6] Y. M. CHIANG, S. J. FENG, On the Nevanlinna characteristic of f (z+η) and difference equations in the complex plane, Ramanujan J. 16 (1)(2008) 105–129. [7] A. GOLDBERG, I. OSTROVSKII, Value Distribution of Meromorphic functions, Transl. Math. Monogr., vol. 236, Amer. Math. Soc., Providence RI, 2008. [8] G. G. GUNDERSEN, Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates. J. London Math. Soc. (2) 37 (1988) 88–104. [9] R. G. HALBURD, R. J. KORHONEN, Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl. 314 (2) (2006) 477-487. [10] R. G. HALBURD, R. J. KORHONEN, Nevanlinna theory for the difference operator. Ann. Acad. Sci. Fenn. Math. 31 (2) (2006) 463–478. [11] W. K. HAYMAN, Meromorphic functions. Oxford Mathematical Monographs Clarendon Press, Oxford 1964. [12] L. KINNUNEN, Linear differential equations with solutions of finite iterated order. Southeast Asian Bull. Math. 22 (4) (1998) 385–405. [13] I. LAINE, C. C. YANG, Clunie theorems for difference and q-difference polynomials. J. Lond. Math. Soc. (2) 76 (2007) 556-566. [14] Z. LATREUCH, B. BELA¨ IDI, Growth and oscillation of meromorphic solutions of linear difference equations. Mat. Vesnik 66 (2) (2014) 2, 213–222. [15] H. F. LIU, Z. Q. MAO, On the meromorphic solutions of some linear difference equations. Adv. Difference Equ. 2013, 2013:133, 1-12. [16] J. WANG, Growth and poles of meromorphic solutions of some difference equations. J. Math. Anal. Appl. 379(1) (2011) 367–377. [17] C. C. YANG, H. X. YI, Uniqueness theory of meromorphic functions, Mathematics and its Applications, 557. Kluwer Academic Publishers Group, Dordrecht, 2003. [18] X. M. ZHENG, J. TU, Growth of meromorphic solutions of linear difference equations. J. Math. Anal. Appl. 384 (2)(2011) 349–356. [19] Y. P. ZHOU, X. M. ZHENG, Growth of meromorphic solutions to homogeneous and nonhomogeneous linear (differential-)difference equations with meromorphic coefficients. Electron. J. Differential Equations 2017, Paper No. 34, 15 pp.