Coupled fixed point theorems in C*-algebra-valued b-metric spaces

Authors: Radenović S., Vetro P., Nastasi A., Quan L.T.

Keywords: metric space; coupled fixed point

Abstract:

In this paper, we give some coupled fixed point results in the framework of C*- algebra-valued b-metric spaces and in particular in the setting of C* algebra-valued metric spaces. These results, with shorter proofs, generalize and improve other theorems recently introduced. We have used a method of reducing coupled fixed point results to the respective ones for mappings with one variable in the framework of b-metric spaces. Finally, two examples are given to support our theoretical work.

References:

[1] Alsulami, H.H., Agarwal, R.P., Karapınar, E., Khojasteh, F. (2016) A short note on C ∗ $C^{*}$ -valued contraction mappings. Journal of Inequalities and Applications, 2016(1): [2] Bai, C. (2016) Coupled fixed point theorems in C ∗ $C^{*}$ -algebra-valued b-metric spaces with application. Fixed Point Theory and Applications, 2016(1): [3] Czerwik, S. (1993) Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 5-11; 1 [4] Deimling, K. (1985) Nonlinear functional analysis. Springer Verlag [5] Dung, N.V., Hang, V.T.L., Djekić, D.D. (submitted) A simple approach to results in C*-algebra-value bmetric spaces [6] Huang, H., Radenović, S. (2015) Common fixed point theorems of generalized Lipschitz mappings in cone b-metric spaces over Banach algebras and applications. J Nonlinear Sci. Appl., 787-799; 8 [7] Janković, S., Kadelburg, Z., Radenović, S. (2011) On cone metric spaces: A survey. Nonlinear Analysis: Theory, Methods & Applications, vol. 74, br. 7, str. 2591-2601 [8] Jovanović, M., Kadelburg, Z., Radenović, S. (2010) Common Fixed Point Results in Metric-Type Spaces. Fixed Point Theory and Applications, 2010(1): 978121 [9] Kadelburg, Z., Radenović, S. (2016) Fixed point results in C ∗ $C^{*}$ -algebra-valued metric spaces are direct consequences of their standard metric counterparts. Fixed Point Theory and Applications, 2016(1): [10] Kamran, T., Postolache, M., Ghiura, A., Batul, S., Ali, R. (2016) The Banach contraction principle in C ∗ $C^{*}$ -algebra-valued b-metric spaces with application. Fixed Point Theory and Applications, 2016(1): [11] Klin-eam, C., Kaskasem, P. (2016) Fixed Point Theorems for Cyclic Contractions in C ⁎. Journal of Function Spaces, 2016: 1-16 [12] Ma, Z., Jiang, L. (2015) C∗-algebra-valued b-metric spaces and related fixed point theorems. Fixed Point Theory Appl., 222; 2015 [13] Ma, Z., Jiang, L., Sun, H. (2014) C∗-algebra-valued metric spaces and related fixed point theorems. Fixed Point Theory and Applications, 2014(1): 206 [14] Murphy, G.J. (1990) C*-algebras and operator theory. Boston: Academic Press [15] N.V., Dung, V.T. (2016) Le Hang, On relaxations of contraction constants and Caristis theorem in b-metric spaces. J Fixed Point Theory Appl., 18, 267-284 [16] Qiaoling, X., Lining, J., Zhenhua, M. (2015) Common fixed point theorems inC∗-algebra-valued metric spaces. arXiv: 1506. 05545v2[math. FA] 30 Jun [17] Radenović, S. (2014) Coupled fixed point theorems for monotone mappings in partially ordered metric spaces. Kragujevac Journal of Mathematics, vol. 38, br. 2, str. 249-257 [18] Shehwar, D., Kamran, T. (2015) C∗-valued G-contractions and fixed points. J Inequal. Appl., 304; 2015 [19] Tianqing, C.A.O. (2016) Some coupled fixed point theorems in C∗-algebra-valued metric spaces. arXiv: 160. 07168v1[math. OA] 26 Jan