Estimating the Gourava Sombor Index
Authors: Ivan Gutman, Veerabhadrappa R. Kulli
Keywords: Gourava index, Sombor index, Gourava Sombor index, Zagreb index
Abstract:
The paper is concerned with the recently introduced vertex-degree-based graph invariant called Gourava Sombor index (GSO). Lower and upper bounds for GSO are obtained, in terms of Gourava index and the two Zagreb indices. For any graph, the upper bound is strict. Its improvements for special types of graphs are established.
References:
[1] J. A. BONDY, U. S. R. MURTY, Graph Theory with Applications, Macmillan Press, New York, 1976.
[2] B. BOROVIĆANIN, K. C. DAS, B. FURTULA, I. GUTMAN, Bounds for Zagreb indices, MATCH Commun. Math. Comput. Chem. 78 (2017) 17–100.
[3] K. C. DAS, I. GUTMAN, Some properties of the second Zagreb index, MATCH Commun. Math. Comput. Chem. 52 (2004) 103–112.
[4] S. FILIPOVSKI, Relations between Sombor index and some topological indices, Iran. J. Math. Chem. 12 (2021) 19–26.
[5] I. GUTMAN, Degree–based topological indices, Croat. Chem. Acta 86 (2013) 351–361.
[6] I. GUTMAN, Geometric approach to degree–based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem. 86 (2021) 11–16.
[7] I. GUTMAN Some basic properties of Sombor indices, Open J. Discr. Appl.Math. 4(1) (2021) 1–3.
[8] I. GUTMAN, B. RUŠČIĆ, N. TRINAJSTIĆ , C. F. WILCOX, Graph theory and molecular orbitals, XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399–3405.
[9] I. GUTMAN, K. C. DAS, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004) 83–92.
[10] I. GUTMAN, N. TRINAJSTI´C, Graph theory and molecular orbitals. Total p-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535–538.
[11] V. R. KULLI, College Graph Theory, Vishwa International Publications, Gulbarga, 2012.
[12] V. R. KULLI, The Gourava indices and coindices of graphs, Annals Pure Appl. Math. 14(1) (2017) 33–38.
[13] V. R. KULLI, Graph indices, in: M. PAL, S. SAMANTA, A. PAL (Eds.), Handbook of Research of Advanced Applications of Graph Theory in Modern Society, Global, Hershey, 2020, pp. 66–91.
[14] V. R. KULLI, Gourava Sombor indices, Int. J. Engin. Sci. Res. Technol. 11(11) (2022) 29–38.
[15] H. LIU, I. GUTMAN, L. YOU, Y. HUANG, Sombor index: Review of extremal results and bounds, J. Math. Chem. 66 (2022) 771–798.
[16] I. MILOVANOVIĆ, E. MILOVANOVIĆ, M. MATEJIĆ , On some mathematical properties of Sombor indices, Bull. Int. Math. Virt. Inst. 11 (2021) 341–353.
[17] S. NIKOLIĆ, G. KOVAČEVIĆ, A. MILIČEVIĆ, N. TRINAJSTIĆ, The Zagreb indices 30 years after, Croat. Chem. Acta 76 (2003) 113–124.
[18] J. RADA, J. M. RODR´IGUEZ, J. M. SIGARRETA, General properties of Sombor indices, Discr. Appl. Math. 299 (2021) 87–97.
[19] A. RAUF, S. AHMAD, On Sombor indices of tetraphenylethylene, terpyridine rosettes and QSPR analysis on fluorescence properties of several aromatic hetero-cyclic species, Int J. Quantum Chem. 124(1) (2024) e27261.
[20] I. REDŽEPOVIĆ, Chemical applicability of Sombor indices, J. Serb. Chem. Soc. 86 (2021) 445–457.