Family of Occasionally Weakly Compatible Mappings with an Application in Dynamic Programming

Authors: Penumarthy P. Murthy, Kavita, Sanjey Kumar, Ersin Gilić

Keywords: (psi,fi)-weak contraction, Occasionally weakly compatible mappings, property (E.A), Functional equations, Dynamic programming

Abstract:

In this paper, we investigate the existence of a unique common fixed point of families of occasionally weakly compatiblemappings along with property(E.A) satisfying a generalized (psi,fi)-weak contraction condition involving cubic terms of distance function which generalize some known results. As an application, we discuss the existence and uniqueness of a common solution of certain functional equations arising in dynamic programming.

References:

[1] M. AAMRI, D. EI MOUTAWAKIL, Some new common fixed point theorems under strict contractive conditions,Math. Anal. Appl. 270 (2002), 181–188. [2] Y. I. ALBER, S. GUERRE-DELABRIERE, Principle of weakly contractive maps in Hilbert spaces, New Results in Operator Theory Adv. Appl. 98 (1997), 7–22. [3] M. A. AL-THAGAFI, N. SHAHZAD, Generalized l−nonexpansiveself maps and invariant approximations, Act. Math. Sin. 24 (2008), 867–876. [4] M. A. AL-THAGAFI, N. SHAHZAD, A note on occasionally weakly compatible maps, Int. J. Math. Anal. Vol. 3, 2 (2009), 55–58. [5] G. V. R. BABU, G. N. ALEMAYEHU, Points of coincidence and common fixed points of a pair of generalized weakly contractive mappings, J. Adv. Res. Pure Math. Vol. 2, 2 (2010), 89–106. [6] S. BANACH, Surles operations dans les ensembles abstraites et leaursapplications, Fundam. Math. 3 (1922), 133–181. [7] R. BELLMAN, B. S. LEE, Functional equations arising in dynamic programming, Aequationes Math. 17 (1978), 1–18. [8] D. W. BOYD, J. S. W. WONG, On nonlinear contractions, Proc. Am. Math. Soc. Vol. 20, 2 (1969), 458–464. [9] R. CHUGH, S. KUMAR, Common fixed point for weakly compatible maps, Proc. Indian Acad. Sci.(Math. Sci.). Vol. 111, 2 (2001), 241–247. [10] LJ. B. CIRIC, Generalized contractions and fixed point theorems, Publ. Inst. Math. 26 (1971), 19–26. [11] LJ. B. C IRIC, On a family of contractive maps and fixed points, Publ. Inst. Math. 31 (1974), 45–51. [12] LJ. B. CIRIC, A. RAZANI, S. RADENOVIC, J. S. UME, Common fixed point theorems for families of weakly compatible maps, Comput. Math with Appl. 55 (2008), 2533–2543. [13] D. C. DOLICANIN- DJEKIC, On Some Ciric Type Results in Partial b-Metric Spaces, FILOMAT. Vol. 31, 11 (2017), 3473–3481. [14] P. DEBNATH, Z. D. MITROVIC, S. RADENOVIC, Inter polativehardy-Rogers and Reich-Rus-Ciric type contractions in b-metric spaces and rectangular b-metric spaces,Matematiˇcki Vesnik. Vol. 4, 74 (2020), 368–374. [15] D. JAIN, S. KUMAR, Intimate mappings satisfying generalized f− weak contraction involving cubic terms of metric function, J. Nonlinear Anal. App. 2 (2018), 192–200. [16] D. JAIN, S. KUMAR, S. M. KANG, Weak contraction condition for mappings involving cubic terms of the metric function, Int. J. Pure Appl. Math. 116 (2017), 1115–1126. [17] D. JAIN, S. KUMAR, B. E. RHOADES: Common fixed points for R−weakly commuting mappings satisfying a weak contraction. Res. Fixed Point Theory Appl, 2019 (2019), Article ID 2019003, 18 pages. [18] D. JAIN, S. KUMAR, C. Y. JUNG, Common fixed points for weakened compatible mappings satisfying the generalized f−weak contraction condition, Korean Soc. Math. Educ. ser. B: Pure Appl. Math. Vol. 26, 2 (2019), 99–110. [19] D. JAIN, S. KUMAR, C. PARK, Variants of R−weakly commuting mappings satisfying a weak contraction, Miskolc Mathematical Notes. Vol. 22, 1 (2021), 259–271. [20] D. JAIN, S. KUMAR, S. M. KANG AND C. JUNG, Weak contraction condition for compatible mappings involving cubic terms of the metric function, Far East J. Math. Sci. Vol. 103, 4 (2018), 799–818. [21] G. JUNGCK, Commuting mappings and fixed points, Amer. Math. Monthly. 83 (1976), 261–263. [22] G. JUNGCK, Compatible mappings and common fixed points, Int. J. Math. Math. Sci. 9 (1986), 771–779. [23] G. JUNGCK, Common fixed points for non continuous non-self maps on non-metric spaces, Far East J. Math. Sci. Vol. 4, 2 (1996), 199–215. [24] E. KARAPINAR, Z. D. MITROVIC, A. ¨OZT¨URK, S. RADENOVIC, On a theorem of ´ Ciri´c in b-metric spaces, Applied Math & Statistics, 70 (2021), 217—225 . [25] KAVITA, S. KUMAR, Fixed points for Intimate mappings, J. Math. Comput. Sci. Vol. 12, 48 (2022). [26] M. S. KHAN, M. SWALEK, S. SESSA, Fixed point theorems by altering distances between two points, BULL. AUSTRAL. MATH. SOC. 30 (1984), 1–9. [27] S. M. KANG, Y. J. CHO, G. JUNGCK, Common fixed points of compatible mappings, Int. J. Math. Math. Sci. Vol. 13, 1 (1990), 61–66. [28] R. KUMAR, S. KUMAR, Fixed points for weak contraction involving cubic terms of distance function, J. MATH. COMPUT. SCI. 11 (2021), 1922–1954. [29] P. P. MURTHY, K. N. V. V. V. PRASAD, Weak contraction condition involving cubic terms of d(x,y) under the fixed point consideration, J.Math. Article. ID 967045,5 pages. DOI 10.1155/2013/967045. [30] A. RAZANI, M. YAZDI, Two common fixed point theorems for compatible mappings, Int. J. Nonlinear Anal. Appl. Vol. 2, 2 (2011), 7–18. [31] B. E. RHOADES, Some theorems on weakly contractive maps, Nonlinear Anal. Vol. 47, 4 (2001), 2683–2693. [32] B. SINGH, S. JAIN, A fixed point theorem in Menger space through weak compatibility, J. Math. Anal. Appl. 301 (2005), 439–448. [33] S. SESSA, On a weak commutativity conditions of mappings in fixed point considerations, Publ. Inst. Math. Vol. 32, 46 (1982), 149–153. [34] F. VETRO, S. RADENOVI´C , Nonlinear y-quasi-contractions of ´ Ciri´c-type in partial metric spaces, Applied Mathematics and Computation. Vol. 219 4 (2012), 1594–1600. [35] Q. ZHANG, Y. SONG, Fixed point theory for generalized f−weak contractions, Appl.Math. Lett. 22 (2009), 75–78.