On Chua Dynamical System
Authors: Lj. M. Kocić, S. Gegovska-Zajkova, S. Kostadinova
Keywords: Chua dynamics, chaos, strange attractors, bifurcation
Abstract:
The famous Chua piecewise dynamical system (Chua circuit) has been slightly modified by introducing smoothed h-function. So, the C^1 function is obtained instead of C^0 one. Dynamics of such system is evidenced by numerical examination of the orbits in 3D phase space, Fourier spectrum, leading Lyapunov exponent bifurcation diagrams and Poincaré maps.
References:
[1] ALGABA, A., FREIRE, E., GAMERO, E., RODRIGUEZ-LUIS, A.J., On the Takens-Bogdanov bifurcation in the Chua’s equation, IEICE Transactions on Fundamentals of Electronics Communications & Computer Sciences, vol. E82-A, no.9, (1999), 1722-1728.
[2] BILOTTA, E., PANTANO, P., Gallery of Chua Attractors, World Scientific Series on Nonlinear Science, Series A – Vol. 61, Singapore, 2008.
[3] CHUA, L. O., KOMURO, M., AND MATSUMOTO T., The double scroll family, IEEE Trans. Circuit and Systems, 31, (1986), 1072-1118.
[4] GEGOVSKA-ZAJKOVA, S., KOCIĆ, LJ. M., Rational Approximated Models Of Chaotic Oscillators, IV Congress of Mathematicians of Macedonia, October 19-22, 2008, Struga, R. Of Macedonia.
[5] GEGOVSKA-ZAJKOVA, S., KOCIĆ, LJ. M., E., BABACE, Chaos in Jerk Dynamics, ETAI Sept. 26-29, 2009, Ohrid.
[6] HIRSCH, M. W., SMALE, S., DEVANEY, R. L., Differential Equations, Dynamical Systems, And An Introduction To Chaos, Elsevier Academic Press, 2004.
[7] HUANG, LJ. M., A., PIVKA, L., WU, C-W., FRANZ, M., Chua’s equation with cubic nonlinearity, International Journal of Bifurcation & Chaos in Applied Sciences & Engineering, vol. 6, no.12A, (1996), 2175-2222.
[8] KOCIĆ, LJ. M., GEGOVSKA-ZAJKOVA, S., A Class Of Chaotic Circuits, Sedma Nacionalna Konferencija so Meunarodno Uestvo ETAI ’2005 (Seventh National Conference with International Participation ETAI’2005) Ohrid, Republic of Macedonia, 21 – 24. IX 2005, Ed. M. J. Stankovski, pp. A.134 – A.138.
[9] KOCIĆ, LJ. M., STEFANOVSKA, L. AND GEGOVSKA-ZAJKOVA, S., Approximations of Chaotic Circuits, Proceedings of the 11th Symposium of Mathematics and its Applications, November, 2-5, 2006, (Ed. N. Boja), Timisoara Research Centre of the Romanian Academy and ”Politehnica” University of Timisoara, 159-166.
[10] KOCIĆ, LJ. M., STEFANOVSKA, L. AND GEGOVSKA-ZAJKOVA, S., Approximated Models of Chaotic Oscillators, Physica Macedonica 56 (2006), 29-36.
[11] KOCIĆ, LJ. M., GEGOVSKA-ZAJKOVA, S., STEFANOVSKA, L., Numerical Lyapunov Stability, A4-6, CD- Proceedings of the Eight National Conference with International ParticipationETAI 2007, Ohrid, R. Macedonia, 19-21.IX.2007.
[12] KOCIĆ, LJ. M., GEGOVSKA-ZAJKOVA, S., On a Jerk Dynamical System, Facta Univ. Ser. Automatic Control and Robotics (to appear).
[13] KOCIĆ, LJ. M., STEFANOVSKA, L. AND GEGOVSKA-ZAJKOVA, S., Numerical Examination of Minimal Chaos, In: Finite Difference Methods: Theory and Applications (Proc. Fourth Int. Conf. FDM:T&A’06, Aug. 26-29, 2006, Lozanetz, Bulgaria, I. Farago, P. Vabishchevich, L. Vulkov, Eds), pp. 234-238, Rousse Univ. “Angel Kanchev”, Rousse, 2007.
[14] MATSUMOTO, T., CHUA, L. O., AND KOMURO, M., The Double Scroll, IEEE Trans. Circuit and Systems, 32, (1985), 797-818.
[15] MATSUMOTO, T., CHUA, L. O., AND AYAKI, K., Reality of Chaos in the Double Scroll Circuit: A Comuter-Assisted Proof, IEEE Trans. Circuit and Systems, 35, (1988), 909-925.
[16] PIVKA, L, WU, C-W., HUANG, A., Chua’s oscillator: a compendium of chaotic phenomena, Journal of the Franklin Institute, vol.331B, No.6, (1994), 705-741.
[17] SHIL’NIKOV, L. P., Chua’s Circuit: Rigorous Results and Future Problems, IEEE Trans. Circuit and Systems-I: Fundamental Theories and Applications, 40, No 10, 1993, 784-786.
[18] TANG, K.S., MAN, K.F., An alternative Chua’s circuit implementation, IEEE International Symposium on Industrial Electronics. Proceedings. ISIE’98 (Cat. No. 98TH8357). IEEE. Part vol.2, (1998), 441-444.
[19] ZHONG, G-Q., Implementation of Chua’s Circuit with a Cubic Nonlinearity, IEEE Trans. Circuit and Systems-I: Fundamental Theories and Applications, 41, No 12, 1994, 934-941.